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Problem setup MARINA and VR-MARINA Experiments
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Communication complex1ty (Corollaries 2.1, 3.2): . e
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lar compression operators in (Safaryan et al., 2020;
Beznosikov et al., 2020). In our work we use unbiased
COMPIessors.

Unbiased Compression

A randomized mapping C: RY — R? is an unbi-
ased compression operator (unbiased compressor)
it there exists w > 0 such that

E[C(@)] =2, E|C)—z|*<wla|?,

Vz € R

stationary point including:

e Quantized Gradient Descend (analyzed by Khaled,

1
et al, 2020) requires O ( j:w) rounds.
emn
o DIANA (introduced by Mishchenko et al., 2019)

requires O ((1 Wl w/n) rounds.
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e For another comparisons please check a paper.

® A new distributed method supporting

compate to the previous state of the art methods.

© Numerical experiments has been implemented with
a multi-node distributed execution in MPI4PY’.

Experimental non-convex problem setup:
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Right now we are carrying experiments on CNNs.
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