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Problem setup

We consider distributed optimization prob-
lems in the following form:

min
x∈Rd

f (x) := 1
n

n∑
i=1
fi(x) , (1)

•n is the number of devices or workers
•d is dimension of the optimization variable
• fi : Rd→ R is a differentiable loss accessible by
worker i. It’s gradient is a Lipschitz continuous.
• In the paper, we consider two cases:
• fi(x) = E

i∼Di
[f

i
(x)]

• fi(x) = 1
m

m∑
j=1

fij(x)

•The goal: find x̂, such that E
[
‖∇f (x̂)‖2] ≤ ε2

Communication Bottleneck

In distributed training and federated learning, model
updates have to be exchanged pretty often. Due to
the size of the communicated messages for commonly
considered deep learning models, this represents sig-
nificant bottleneck of the whole optimization proce-
dure. There are several ways how reduce the amount
of data that has to be transmitted:
•Change topology of the network
•Do more work on each worker
•Communication compression
One can find a detailed summary of the most popu-
lar compression operators in (Safaryan et al., 2020;
Beznosikov et al., 2020). In our work we use unbiased
compressors.

Unbiased Compression

A randomized mapping C : Rd → Rd is an unbi-
ased compression operator (unbiased compressor)
if there exists ω ≥ 0 such that
E [C(x)] = x, E ‖C(x)− x‖2 ≤ ω ‖x‖2 , ∀x ∈ Rd.

Definition ("Biased")

A (possibly) randomized mapping C : Rd→ Rd is a
general compression operator (general compres-
sor) if there exists λ > 0 and δ ≥ 1 such that

E
[
‖λC(x)− x‖2] ≤ (

1− 1
δ

)
‖x‖2 , ∀x ∈ Rd.

If this holds, we will for simplicity write C ∈ C(δ).

MARINA and VR-MARINA

Input:
Unbiased compressor Q, starting point x0, stepsize γ, probability p ∈ (0, 1], number of iterations K.
Algorithms:

MARINA VR-MARINA
Master samples ck ∼ Be(p) Master samples ck ∼ Be(p)
Master broadcasts to all workers gk Master broadcasts to all workers gk
Workers in parallel: xk+1 = xk − γgk Workers in parallel: xk+1 = xk − γgk

Workers compute local gradient estimator if ck = 1 Workers compute local gradient estimator if ck = 1
gk+1
i = ∇fi(xk+1) gk+1

i = ∇fi(xk+1)
Workers compute local gradient estimator ck = 0 Workers compute local gradient estimator ck = 0

gk+1
i = gk +Q

(
∇fi(xk+1)−∇fi(xk))

)
gk+1
i = gk +Q

1
b′

∑
j∈Ii,k

(
∇fij(xk+1)−∇fij(xk)

)
On Master gk+1 = 1

n

n∑
i=1
gk+1
i On Master gk+1 = 1

n

n∑
i=1
gk+1
i

Communication complexity (Corollaries 2.1, 3.2):

K = O
(1 + w)

√
1/n

ε2

 K = O
(1 + max{w,

√
(1 + w)m)}

√
1/n

ε2

 , b′ = 1

Comparisons

To the best of our knowledge, the communication
complexity bounds we prove for MARINA are strictly
superior to those of all previous first order methods
for non-convex optimization with the goal funding ε
stationary point including:
•Quantized Gradient Descend (analyzed by Khaled,
et al, 2020) requires O

(1 + w

ε4n

)
rounds.

•DIANA (introduced by Mishchenko et al., 2019)

requires O
(1 + w)

√
w/n

ε2

 rounds.

•For another comparisons please check a paper.

Contributions

1 A new distributed method supporting
communication compression with a complete
theory for all meta-parameters.

2 Significant improvement in the complexity bounds
compate to the previous state of the art methods.

3 Numerical experiments has been implemented with
a multi-node distributed execution in MPI4PY.

Experimental non-convex problem setup:

min
x∈Rd

1
n

n∑
i=1
l(aTi x, bi) + λ

2
‖x‖2

l(τ, s) =
1− 1

1 + exp(−τs)

2

Right now we are carrying experiments on CNNs.

Experiments
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