
Optimization Methods and Software

for Federated Learning

 PhD Defense

Konstantin Burlachenko

Computer Science, KAUST

Peter Richtárik Eric Feron

 David Keyes Suhaib Fahmy

Stephen Boyd Nic Lane

Dissertation Defense Committee Members

Images: Google Search

#1

MS in Computer Science
 Bauman Moscow State Technical University (2003 — 2009)
Industry Experience
 Startup (2012) Acronis (2010 — 2012) Yandex (2013 — 2014)

 NVIDIA (2014 — 2019) HUAWEI (2019 — 2020)

Stanford Graduate Certificates
 Data, Models and Optimization Graduate Certificate (2015 — 2018)

 Artificial Intelligence Graduate Certificate (2016 — 2019)

PhD Academic Journey
 Joined Prof. P. Richtárik’s Optimization and ML Lab at KAUST (August 2020)
 Defended CS PhD Proposal (2022)

 Member of Center of Excellence SDAIA-KAUST AI (2022 — 2023)

 Internships
 Research Scientist Internship Offer, Facebook Inc., Menlo Park, USA (2021)
 Internship in Private Federated Learning ML Team, Apple, Cambridge, UK (2024)

 Conference Presentations
 Presentations: ICLR’24, SIAM’23, ICML’21, NSF-TRIPODS’21, DistributedML’21&’23

 Awards
 Dean’s Award (2020) Grant from SDAIA (2022) Dean’s Award (2023)
 AMD MI50 from AMD (2023) Shaheen III Proposal (2024) RDIA grant (2025)

#1 Background #2

Images: Google Search

[1]

Personalized Federated Learning with Communication Compression
E. Bergou, K. Burlachenko, A. Dutta, P. Richtárik

[2]

MARINA: Faster Non-Convex Distributed Learning with Compression
E. Gorbunov, K. Burlachenko, Z. Li, P. Richtárik

[3]

Fl_PyTorch: Optimization Research Simulator for Federated Learning
K. Burlachenko, S. Horváth, P. Richtárik

[4]

Faster Rates for Compressed Federated Learning with Client-Variance Reduction
H. Zhao, K. Burlachenko, Z. Li, P. Richtárik

[5]

Don’t Compress Gradients in Random Reshuffling: Compress Gradient Differences
A. Sadiev, G. Malinovsky, E. Gorbunov, I. Sokolov, A. Khaled, K. Burlachenko, P. Richtárik

[6]

Sharper Rates and Flexible Framework for Nonconvex SGD with Client and Data Sampling
A. Tyurin, L. Sun, K. Burlachenko, P. Richtárik

[7]

Federated Learning with Regularized Client Participation
G. Malinovsky, S. Horváth, K. Burlachenko, P. Richtárik

[8]

Error Feedback Shines when Features are Rare
P. Richtárik, E. Gasanov, K. Burlachenko

[9]

Federated Learning is Better with Non-Homomorphic Encryption
K. Burlachenko, A. Alrowithi, F. Ali Albalawi, P. Richtárik

 [10]

Error Feedback Reloaded: From Quadratic to Arithmetic Mean of Smoothness Constants
P. Richtárik, E. Gasanov, K. Burlachenko

 [11]

Unlocking FedNL: Self-Contained Compute-Optimized Implementation
K. Burlachenko, P. Richtárik

 [12]

PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression
V. Malinovskii, D. Mazur, I. Ilin, D. Kuznedelev, K. Burlachenko, K. Yi, D. Alistarh, P. Richtárik

[13]

BurTorch: Revisiting Training from First Principles by Coupling Autodiff, Math Optimization, and Systems
K. Burlachenko, P. Richtárik

Papers Co-Authored During PhD (Creation Timeline)

Workshop
FL-ICML-2023

Workshop
FL-ICML-2023

Symposium on
SIAM OP23

Symposium on
ACM PODC

2022

ML Summer
School

Okinawa 2024

KAUST AI
Symposium

2024

Ch6

Ch2

Ch5

Ch4

Ch3

Ch7

Ch8

Preparing for

Resubmission

#3

Machine Learning #4

Traditional machine learning assumes that
the training dataset is collected and stored centrally

Machine Learning

Traditional machine learning assumes that
the training dataset is collected and stored centrally

However, centralized storage is not where data is generated in the first place

#4

Orbis
(Unix-like)

Xbox System Software
(Windows-like)

Android iOS
macOS, Windows,

Linux, Unix

#4

Abstract Edge Device

Shifting Training to Edge Devices

Images: Google Search

watchOS
(iOS based)

Tesla: Tesla OS
BMW, Volvo: QNX

Fast Ethernet 12 MBytes/sec

Gigabit Ethernet 125 MBytes/sec

InfiniBand HDR 6250 Mbytes/sec

InfiniBand Melanox 25000 Mbytes/sec

#5

. . .

#4 #4 Shifting Training to Edge Devices #6

Shifting Training to Edge Devices

The success of applying supervised ML (for fixed <X,Z,Y>) depends on:
 1. Sample Size, Signal-to-Noise ratio.
 2. Your assumptions about ℱ.
 3. If use y = 𝐹 (x) as a predictor success depend on Z in (X, Y).

. . .
Optimization
objective

#6

Federated Learning (FL)

Images: Google Search

While FL mitigates sample size limitations and enables novel decentralized

applications, it also brings new challenges

#7

FL Origins

Federated Learning: Strategies for Improving Communication Efficiency (2016) J. Konečný, B. McMahan, F. X. Yu, P. Richtárik, A.T. Suresh, D. Bacon
Federated Optimization: Distributed Machine Learning for On-Device Intelligence (2016) J.Konečný, B. McMahan, D. Ramage, P. Richtárik
Communication-Efficient Learning of Deep Networks from Decentralized Data (2017) B.McMahan, et al.
Advances and Open Problems in Federated Learning (2021) P. Kairouz, et al.

The first publication with “Federated Learning” in its title

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch5: PAGE Extensions
Tyurin et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Theoretical Work Practical Work

#8

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Theory-Inspired Practical Work

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch5: PAGE Extensions
Tyurin et al., 2023

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Theoretical Work Practical Work

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Theory-Inspired Practical Work

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

#9

Distributed Gradient Descent #10

Distributed Gradient Descent #10

. . .

Distributed Gradient Descent #10

. . .

Distributed Gradient Descent #10

. . .

. . .

Distributed Gradient Descent #10

. . .

. . .

Distributed Gradient Descent #10

. . .

. . .

Distributed Compressed Gradient Descent #11

. . .

. . .

C
O

M
P

R
ESS

Compressors

Cost Model

#12

Compressors

Class of Unbiased Compressors

Cost Model

#12

Compressors

Class of Unbiased Compressors

Class of Contractive Compressors

Cost Model

#12

Compressors

Class of Unbiased Compressors

Sparsification Examples (𝒅 = 𝟑,𝑲 = 𝟐)

Cost Model

#12

Class of Contractive Compressors

Distributed Compressed Gradient Descent

With Contractive Compressors
#13

Distributed Compressed Gradient Descent with TopK
leads to exponential divergence even in strongly convex settings (𝑛 = 𝑑 = 3)

On Biased Compression for Distributed Learning (2023) Beznosikov et al. (Section 5.2)

. . .

EF21 #14

EF21 (Richtárik et al., 2021) is the theoretically fastest method that is
provably correct when using contractive compressors

Assumptions:

Goal:

EF21 #14

EF21 (Richtárik et al., 2021) is the theoretically fastest method that is
provably correct when using contractive compressors

Assumptions:

Goal:

EF21 #15

At Master

At Client

EF21 #15

Iteration

Client

Total Number of Clients

EF21

Communicated from
Client to Master

#15

Communicated from
Master to Client

EF21 #15

EF21

EF21 guarantees

#15

EF21

Total Iterations

#15

EF21 #16

EF21 #16

EF21 #16

Ch3: EF21 Reloaded (2024)

#17

Example-Driven Reformulation

QM changed, even AM is the same !

#18

Ch3: EF21 Reloaded (Approach 1) #19

Ch3: EF21 Reloaded (Approach 1) #19

. . .
...

Ch3: EF21 Reloaded (Approach 1) #19

. . .
...

Ch3: EF21 Reloaded (Approach 1) #20

Ch3: EF21 Reloaded (Approach 1) #20

Ch3: EF21 Reloaded (Approach 2) #21

Good: We reduced QM to AM (up to the factor 2)
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛

EF21-W

Ch3: EF21 Reloaded (Approach 2) #21

Assumptions:
B1. Initial shifts​ for all clones are identical B2. The compressors are deterministic
⇒ Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

Good: We reduced QM to AM (up to the factor 2)
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛

EF21-W

Ch3: EF21 Reloaded (Approach 2) #21

Assumptions:
B1. Initial shifts​ for all clones are identical B2. The compressors are deterministic
⇒ Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

Good: We reduced QM to AM (up to the factor 2)
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛

EF21-W

Ch3: EF21 Reloaded (Approach 2) #21

Assumptions:
B1. Initial shifts for all clones are identical B2. The compressors are deterministic
⇒ Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

Our analysis reveals that assumptions (B1) and (B2) are not required

Good: We reduced QM to AM (up to the factor 2)
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛

EF21-W

Ch3: EF21 Reloaded (Approach 3)

The analysis of EF21-W reveals that the original EF21 analysis requires modification for the quantity 𝐺𝑡

It motivated us to analyze the original EF21 and discover:

Incorporating weights into the original EF21 analysis improves the rate !!

#22

Weights in EF21 Analysis

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch5: PAGE Extensions
Tyurin et al., 2023

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Theoretical Work Practical Work

#23

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Theory-Inspired Practical Work

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

Main Tools for Privacy Guarantees in FL

Trusted Execution Environments (TEE)

Protects the execution environment from illegal intervention

Differential Privacy (DP)

Protects output of algorithm so that users’ data are not leaking after execution

Secure Multi-Party Computation (MPC)

Protects inputs of algorithm at the cost of communication

Homomorphic Encryption (HE)

Computation on encrypted data without revealing inputs or outputs

#24

Homomorphic Encryption:
Computation on encrypted data without revealing inputs or outputs

Homomorphic Encryption (HE)

Homomorphic Encryption In Action:
1. Any device with the public key can perform computations on encrypted data
2. Only the holder of the private key can decrypt the result

#25

Cheon-Kim-Kim-Song (CKKS, 2017):
a. The CKKS scheme supports approximate arithmetics on real and complex dense
vectors and is considered as SOTA in this class
b. CKKS (and HE in general) is more complex primitive than classical block ciphers
(e.g. AES-based), relying on entirely different mathematical foundations

Distributed Compressed Gradient Descent with

Homomorphic Encryption (HE)
#26

Average of Encrypted
Messages =

Encryption of Average
of Plain Messages

. . .

Classical Cryptography: AES Block Cipher

AES (2001) Block Cipher
• Maps deterministically and with reversible operations input (128 bits) into output (128 bits)
• Has hardware support (Intel Westmere, AMD Bulldozer, ARM Cortex-A53)
• AES is a strong cryptographic primitive, widely trusted as a secure PRP

A secure pseudorandom permutation (PRP)
produces permutations that are computationally indistinguishable from uniformly random
permutations by any known polynomial-time algorithm

Encrypt

Decrypt
Ciphertext Block

128 bits

Plaintext Block

128 bits

Key 128|192|256 bits

#27

DP, HE, MPC, TEE…

But where is Classical Cryptography?
#28

Researchers from 2020 – 2024 consistently argue that applying symmetric-key

encryption like AES or DES in FL is unsuitable, challenging, not feasible

Secure, Privacy-Preserving, and Federated Machine Learning in Medical Imaging,
G. Kaissis et al. (2020) Nature Machine Intelligence
Private Artificial Intelligence: Machine Learning on Encrypted Data,
Kristin E. Lauter (2022) SIAM
Cybersecurity English Accelerated Encrypted Execution of General Purpose Applications,
V. Joseph et al (2023) NVIDIA Blog
FedSHE: Privacy-Preserving and Efficient Federated Learning with Adaptive Segmented CKKS Homomorphic Encryption,
Pan Y. et al. (2024) Cybersecurity
Revisiting Fully Homomorphic Encryption Schemes for Privacy-Preserving Computing,
N. Jain et al. (2024) Emerging Technologies and Security in Cloud Computing

Ch4: DCGD/PermK/AES (2023) #29

Distributed
Compressed

Gradient Descent

Advanced Encryption
Standard

Permutated
Correlated

Compressors

DCGD/PermK #30

DCGD/PermK #30

PermK Compressors (Rafał Szlendak, et al. 2021)

DCGD/PermK

0.1 1.1 2.1

0.2 1.2 2.2

0.3 1.3 2.3

0.4 1.4 2.4

-0.5 1.5 2.5

0.6 1.6 2.6

0.1

0.2

0

0

0

0

0

0

0

0

2.5

2.6

0

0

1.3

1.4

0

0

Scaling is needed to preserve unbiasedness

#30

Training Iteration

DCGD/PermK #30

Algebraic Properties of PermK

DCGD/PermK/AES #30

DCGD/PermK/AES #30

DCGD/PermK/AES

For AES-128 the key size is 128 bits (16 bytes)
HE/CKKS for AES-128 security level
requires key(s) with sizes 420 000 bytes

#30

DCGD/PermK/AES vs HE #31

CLASSICAL HE

NEW

+ Works with arbitrarily
− Introduces numerical errors
− High memory overhead

− Only compatible with specific
+ Does not introduce numerical errors
+ Low memory overhead from AES

DCGD/Permk/AES vs DCGD/PermK vs GD vs GD/CKKS #32

Semi-Asynchronous Behavior for DCGD/PermK #33

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch5: PAGE Extensions
Tyurin et al., 2023

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Theoretical Work Practical Work

#34

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Theory-Inspired Practical Work

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

Distributed Gradient Descent => Distributed Newton #35

Backtracking line search
[BV, 2004]

Distributed Gradient Descent => Distributed Newton #35

Distributed Gradient Descent => Distributed Newton

Bad: The memory requirement for forming and storing second-order information

#35

Distributed Gradient Descent => Distributed Newton

Good: Errork+1 ≤ Const ⋅ Errork
2
. In practice, number of iterations is ≈ 6.

#35

Assumptions for FedNL Family

𝑓(𝑥) is 𝜇 strongly convex and 𝑓𝑖(𝑥) has Lipschitz continuous Hessian

#23
Federated Newton Learn (2022)

(Existing)
#36

Problem

FedNL: Federated Newton Learn
(M. Safaryan et al., 2022)

EF21 Mechanism

Generalizing Biased and Unbiased Compressors to Symmetric Matrices

FedNL Technicality

Problem

#23
Federated Newton Learn (2022)

(Existing)

FedNL Local Superlinear Convergence Guarantees

𝐷 depend on Smoothness of Hessian

#36

FedNL: Federated Newton Learn
(M. Safaryan et al., 2022)

Can we practically use the FedNL implementation presented at ICML 2022?

#23
Federated Newton Learn (2022)

(Existing)
#36

#23
Federated Newton Learn (2022)

(Existing)

Can we practically use the FedNL implementation presented at ICML 2022?

Requires 4.8 hours to launch a single experiment on a server-grade workstation

The prototype supports only a multi-node simulation

Prototype integration into resource-constrained applications is challenging

Not Yet!

#36

Problem is Deeper

Fact #1 from Data-intensive Computing and OS

Overheads introduced from a large number of components lead to degradation
[1] Scalability! but at what COST?” by McSherry et.al., 2015

#37

Fact #2 from Computer Architecture/Programming Languages

Scripting languages offer the advantage of democratizing implementations.
But their eco-system clashes too much with the principles of the real hardware.
[2] There’s plenty of room at the top: What will drive computer performance after
 Moore’s law? by Leiserson et al., Science 2020

Fact #3 from S. Boyd: This is awesome! I want to use whatever you so-called Control.
What should I use? …nothing.
[3] InControl podcast: Interview with Stephen Boyd, 2023, 01:17:10

Fact #4 from P. Liang: We are in a crisis. Researchers are disconnected from underlying
technologies through abstractions. The problem is abstractions are leaky.
[4] P. Liang, Stanford CS336 Language Modeling from Scratch, Spring 2025

Ch7: Unlocking FedNL (2024)
From Theory to Practice

Contributions for Making FedNL Practical

1. We proposed two new practical compressors
2. Reduced wall clock time of a baseline by ×1000
3. Outperforms several best practice solutions
4. Complete independence on 3rd party frameworks
 [Linux, Win, macOS] x [AArch64, x86-64, CUDA]
5. Can be utilized as native OS executable binaries and libraries

#38

Simultaneously advancing a rigorous theoretical framework and an efficient
implementation presents a significant challenge, as both are equally demanding

Pessimism of TopK Contraction Factor #39

Adaptive TopLEK Compressor

• The idea is to perform compression using 𝐓𝐨𝐩𝐊, with smaller parameter
 compressing as much as theoretically allowed — but no more

• For 𝐓𝐨𝐩𝐋𝐄𝐊, the inequality that describes contraction becomes a tight equality

#40

Cache-aware RanSeqK Compressor

RandK selects a subset of coordinates of cardinality 𝑘 u.a.r. from a total of 𝑑
coordinates, zeroing out the rest and scaling the output to preserve unbiasedness

#41

Cache-aware RanSeqK Compressor

It has the same variance as RandK,
but it is more appealing in practice

RanSeqK selects a pivot 𝑠 u.a.r. from 1,2, … , 𝑑 , then selects deterministically a
block of size 𝒌 from (1,2, … , 𝑑) seen as a torus

#41

Ch7: Unlocking FedNL
Single Node Experiments: L2 Regularized Logistic Regression

Single Node Baseline Improvements

#42

Ch7: Unlocking FedNL
Multi Node Experiments: L2 Regularized Logistic Regression

#43

Ch7: Structure of x1000 Time Improvement for Single Node
FP64, 3.3Ghz, 12 cores, Intel(R) CPU. Logistic Regression d=301

Baseline: Single node Python/NumPy implementation from the original paper

Data Processing Optimization

Use Sparsity from FedNL Compressors

Utilizing AVX512 CPU Extension in x86-64

Eliminating Integer Division

Compiler and Linker Optimization

Linear System Solve Improvement

Reuse Computation from Oracles
Basic Linear Algebra Improvements

Custom oracles without using Cache-Oblivious matrix multiplication

Rewrite in pure C++20/CMake with support macOS, Linux, Windows

Better Compressors Implementation:

Thread pool of workers equal to number of physical cores, atomics for sync

Mem. Optimization. Custom client-specific memory pool instead of global

x1

x1.077

x1.44

x1.379

x1.225

x1.128

x1.31

x1.50
x1.338

x3.072

x20

x1.14

x1.412

x1.278

#44

Total number of improvements at a
finer granularity: 62

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch5: PAGE Extensions
Tyurin et al., 2023

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Theoretical Work Practical Work

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Theory-Inspired Practical Work

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

#45

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch7: Unlocking FedNL
 Burlachenko & Richtárik, 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch3: EF21-W
 Richtárik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL
 Burlachenko and Richtárik, 2024

Federated Learning Challenges Addressed in the Thesis

1. Data
Heterogeneity

2. Device
Heterogeneity

5. Software 4. Privacy 3. Communication

Bottleneck

Theoretical Work Practical Work

Ch1: Introduction

Ch9: Concluding Remarks: Summary and Future Research

Theory-Inspired Practical Work

Ch8: BurTorch
Burlachenko & Richtárik, 2025

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch6:
Compressed L2GD

Bergou et al., 2023

Ch2: FL_PyTorch
Burlachenko et al., 2021

Ch5: PAGE Extensions
Tyurin et al., 2023

#45

Ch2: FL_Pytorch (2021) Existing software frameworks for FL prioritize
deployment, raise the entry barrier, and demand expertise in distributed systems.
Research requires tools with functionalities distinct from industrial runtimes.

Chapters Excluded from In-Depth Presentation #46

Ch6: Compressed L2GD (2023) New Paradigm for FL was proposed in “Federated
Learning of a Mixture of Global and Local Models” (2021) by F.Hanzely and
P.Richtárik. This work extends it with bidirectional communication compressors.

Ch5: PAGE Extensions (2023) PAGE is a theoretical optimal algorithm for finding a
stationary point in sampled gradient complexity in big - 𝒪 notation. This work
enhances the analysis of PAGE and extends it with other sampling strategies.

Ch8: BurTorch (2025) Latency-efficient backpropagation CPU implementation,
which outperforms: JAX, TF, TF Lite, LibTorch (C++), PyTorch TorchScript, PyTorch
Python, Apple MLX, Autograd, Micrograd in memory, time, consumed energy.

All presented projects are accompanied by open-source code,
promoting a culture of openness and collaboration

Thank You for Your Time and Attention!

#47

Backup Slides

Ch2: FL_Pytorch

o

FeLebrities (2023):

A User-Centric Assessment

of Federated Learning

Frameworks

W. Riviera,

I.B. Galazzo,

G. Menegaz

#48

Ch5: PAGE Extensions

Key Step in Discovery Path Theoretical Improvements

𝐿±,𝑤 ≤ 𝐿+ and 𝐿+,𝑤 ≤ 𝐿+

Comparison on synthetized quadratics

#49

Goals
• Strongly convex case
• Non-convex case

Compressors
Each client and master use its own unbiased compressor from ℬ𝑑 𝑤

Aspects of L2GD
• 𝜆 is scalar parameter which allows tradeoff between local and global

model
 𝜆 → 0 (𝜆 → +∞) all nodes are working in decoupled (coupled) form
• 𝒑 is probability of making (relaxed) aggregation
• 𝟏 − 𝒑 is a probability to make in parallel local GD steps

Results
1. The work extends paper [HR, 2021] with bidirectional unbiased compressors
2. Linear convergence rate to neighborhood (strongly convex case) and theory for non-convex case
3. Optimal values of 𝑝(𝜆, 𝐿 ≔ 𝑛𝐿𝑓)

4. Extended empirical study
5. Highlighted that FedAVG is a particular case of L2GD when 𝜂𝜆 ≈ 𝑛𝑝

Ch6: Compressed L2GD #50

Ch8: BurTorch
Benchmarks Across Linux, macOS, and Windows

#51

Single-Node Typical Bandwith
CPU <-> System DDR Memory 51 200 MBytes/sec (DDR5)

GPU core <-> GPU DDR Memory 128 000 MBytes/sec (GDDR6)

DRAM in NVIDIA GPU NVIDIA Ada Lovelace

1008 000 MBytes/sec

GPU DDR <-> PCI-E <->

System DDR Memory

 4 000 MBytes / sec (PCI-E v5, 1 lane)

SATA 3x (HDD) 6000 Mbytes / sec

USB 3.0 (External storage) 600 MBytes / sec

GPU <-> GPU (NVLink) 50 000 Mbytes/sec

GPU <-> GPU

(NVLink via NVSwitch inside DGX-2)

50 000 Mbytes/sec

Multi-Node Typical Bandwith
Fast Ethernet 12.5 MBytes/sec

Gigabit Ethernet 125 MBytes/sec

InfiniBand HDR

 6250 Mbytes/sec

InfiniBand Melanox 25 000 Mbytes/sec

#52

Ch4: AES and its Friends

Incorrect Electronic Code Book (ECB)

Images: Google Search

AES is secure for encoding a single block
For multiple blocks, it should be used with a

Mode of Operation Algorithm

To ensure that message has not been altered in transit,
AES should be paired with a

Message Authentication Code Algorithm
(Similar to CRC for non-secure applications)

#53

AES with EAX Authentication

Overhead: 16 bytes/message

Overhead: 16 bytes/message

Ch4: A Day of Life for Message with CKKS Scheme #54

Ch4: A Day of Life for Message with CKKS Scheme #54

Ch4: A Day of Life for Message with CKKS Scheme

#54

Ch4: A Day of Life for Message with CKKS Scheme #54

Ch3: EF21 Reloaded #55

Ch3: EF21 Reloaded #55

Ch3: EF21 Reloaded (Approach 1)

…

…

#55

Algorithm/Setting Terminate condition Iterations

Gradient Descent / 𝑓(𝑥) is strongly convex.
(generalizable via adding regulizers with cheap proximal operator)

 𝑥𝑘 − 𝑥∗ 2
≤ 𝜀 𝑥0 − 𝑥∗ 2

=> if 𝛻𝑓 𝑥∗ = 0 𝑡ℎ𝑒𝑛 𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤
𝐿

2
𝑥𝑘 − 𝑥∗ 2

𝑘 ≥

𝐿

𝜇
log

1

𝜀

Stochastic Gradient Descent
/ 𝑓(𝑥) is strongly convex
/ g(𝑥) such that E g 𝑥 𝑥 = 𝛻𝑓(𝑥)
/ g(𝑥) such that E g 𝑥 − 𝛻𝑓 𝑥∗ 2 𝑥 ≤ 2𝐴𝐷𝑓 𝑥, 𝑥∗ + 𝐶

 𝐷𝑓 𝑥, 𝑥∗ = 𝑓 𝑥 − 𝑓 𝑥∗ −< 𝛻𝑓 𝑥∗ , 𝑥 − 𝑥∗ >

𝐸[𝑥𝑘 − 𝑥∗ 2
] ≤ 𝜀 𝑥0 − 𝑥∗ 2

=> if 𝛻𝑓 𝑥∗ = 0 𝑡ℎ𝑒𝑛 𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤
𝐿

2
𝑥𝑘 − 𝑥∗ 2

𝑘 ≥ 𝑂
1

𝜀
⋅ log

1

𝜀

Gradient Descent / 𝑓(𝑥) is convex. 𝑓(𝑥𝑘) − 𝑓 𝑥∗ ≤ 𝜀 𝑥0 − 𝑥∗ 2 𝑘 ≥
1

2𝛼𝜀
 , 𝛼 ∈ 0,

1

𝐿

Accelerate Gradient Descent / 𝑓(𝑥) is convex.

𝑓(𝑥𝑘) − 𝑓 𝑥∗ ≤ 𝜀 𝑥0 − 𝑥∗ 2
𝑘 ≥ 1 +

2

𝛼𝜀
 , 𝛼 =

1

𝐿
 (Optimal)

Stochastic Subgradient Descent
/ 𝑓(𝑥) is convex
/ g(𝑥) is unbiased
/ easy prove: g(x) is bounded by G, start iterate 𝑥0 has an upper
bound distance R to 𝑥∗

𝐸[𝑓(𝑥𝑘) − 𝑓 𝑥∗] ≤ 𝜀 𝑘 ≥ 𝑂
1

𝜀2 with optimal 𝑎𝑘 =
𝑅/𝐺

𝑘
 (Optimal)

Stochastic Gradient Descent
/ 𝑓(𝑥) is convex
/ g(𝑥) is unbiased
/ g(x) satisfy sigma-k assumption

𝐸[𝑓(𝑥𝑘) − 𝑓 𝑥∗] ≤ 𝜀

𝑘 ≥ 𝑂
1

𝜀
 to neighborhood.

𝑘 ≥ 𝑂
1

𝜀2 exactly convergence to a solution. (Optimal)

Gradient Descent / 𝑓(𝑥) is non-convex, but smooth

𝛻𝑓(𝑥𝑘 | ≤ 𝜀 𝑘 ≥ 𝑂
1

𝜀2

Stochastic Gradient Descent / 𝑓(𝑥) is non-convex, but smooth. 𝐸 𝛻𝑓(𝑥𝑘 | ≤ 𝜀 From 𝑘 ≥ 𝑂
1

𝜀2 to 𝑘 ≥ 𝑂
1

𝜀4 depending on assumptions

Optimal SGD for case when 𝑓(𝑥) is finite sum of n functions / 𝑓(𝑥)
is non-convex, but smooth (e.g. PAGE)
PAGE reduces to GD if p=1 or 𝜏 = 𝑛

𝛻𝑓(𝑥𝑘 | ≤ 𝜀 𝑘 ≥ 𝑂
𝑛

𝜀2 (Optimal)

#54

