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Machine Learning

Traditional machine learning assumes that
the training dataset is collected and stored centrally
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Machine Learning

Traditional machine learning assumes that
the training dataset is collected and stored centrally

However, centralized storage is not where data is generated in the first place
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Shifting Training to Edge Devices

Fast Ethernet 12 MBytes/sec
Gigabit Ethernet 125 MBytes/sec
InfiniBand HDR 6250 Mbytes/sec
InfiniBand Melanox | 25000 Mbytes/sec

- watchOS
Abstract Edge Device \ (i0S based)

\' e

macOS, Windows, Android i0S Tesla: Tesla OS Orbis Xbox System Software
Linux, Unix BMW, Volvo: QNX (Unix-like) (Windows-like)




Shifting Training to Edge Devices
fn is a local loss constructed from data D,




Shifting Training to Edge Devices

Optimization
objective




Federated Learning (FL)

FL Origins

Federated Learning: Strategies for Improving Communication Efficiency (2016) J. Kone¢ny, B. McMahan, F. X. Yu, P. Richtdrik, A.T. Suresh, D. Bacon
Federated Optimization: Distributed Machine Learning for On-Device Intelligence (2016) J.Konecny, B. McMahan, D. Ramage, P. Richtarik
Communication-Efficient Learning of Deep Networks from Decentralized Data (2017) B.McMahan, et al.

Advances and Open Problems in Federated Learning (2021) P. Kairouz, et al.

( The first publication with “Federated Learning” in its title )

While FL mitigates sample size limitations and enables novel decentralized

applications, it also brings new challenges




Federated Learning Challenges Addressed in the Thesis #8

Theoretical Work Theory-Inspired Practical Work Practical Work

1. Data 2. Device 3. Communication 4. Privacy 5. Software
Heterogeneity Heterogeneity Bottleneck

\ Ch1l: Introduction

Ch2: FL_PyTorch
Burlachenko et al., 2021
Ch3: EF21-W Ch3: EF21-W
Richtarik et al., 2024 Richtarik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch5: PAGE Extensions
Tyurin et al., 2023 |

Ché: Ché:
Compressed L2GD Compressed L2GD
Bergou et al., 2023 : Bergou et al., 2023
Ch7: Unlocking FedNL Ch7: Unlocking FedNL
Burlachenko and Richtarik, 2024 Burlachenko & Richtarik, 2024
Ch8: BurTorch | Ch8: BurTorch :
Burlachenko & Richtdrik, 2025 Burlachenko & Richtarik, 2025

Cho: Concludi.ng Remarks: Summary and Future Research




Federated Learning Challenges Addressed in the Thesis #9

Ch3: EF21-W Ch3: EF21-W
Richtarik et al., 2024 Richtarik et al., 2024
Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL

Burlachenko and Richtarik, 2024



Distributed Gradient Descent
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Distributed Compressed Gradient Descent
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Compressors

Cost Model
Communication Complexity = (#Rounds) x (#Bits/Round)




Compressors #12

Cost Model
Communication Complexity = (#Rounds) x (#Bits/Round)

Class of Unbiased Compressors

B'(w)={B|B:R'=R", E[|B(z)-z|’] <wlz|?, E[B(z)] =z}

\/

w >0 Vo € R4



Compressors #12

Cost Model
Communication Complexity = (#Rounds) x (#Bits/Round)

Class of Unbiased Compressors

B'(w)={B|B:R'=R", E[||B(z)-z|’] <wlz|’, E[B()] =z}

Class of Contractive Compressors

Cd(f;) ={C|C:R* >R, E[|C(z) -z’ ? (1—a)ll[*}

D<a<l Ve € R

B e B w) = C(z):= %HB(C’J)’ C(z) € C’ (a = %—Fl)



Compressors

Cost Model
Communication Complexity = (#Rounds) x (#Bits/Round)

Class of Unbiased Compressors

B'(w)={B|B:R'=R", E[||B(z)-z|’] <wlz|’, E[B()] =z}

Class of Contractive Compressors

Ce) ={C|C:R* 5 R?, E[|C(2) - al’] <(1-a)]z]?}

Sparsification Examples (d = 3,K = 2)

-9 5={1,3} RandK |_g| TopKk S ={1,2} _9
0]2 ¢ B(w;_'=i\z Ti€; e - /o - +7
> =k Ddme emli7|m O)= T fue
3 S ~uar {Q:Q €214 A Q| = K} 3 _ K _ 2 0
—d_1=1 =773
Rand K W=K =2 TopK



Distributed Compressed Gradient Descent

With Contractive Compressors

f = OV AR

£ I 2 R £ (aRY)

Distributed Compressed Gradient Descent with TopK
leads to exponential divergence even in strongly convex settings (n =d = 3)
On Biased Compression for Distributed Learning (2023) Beznosikov et al. (Section 5.2)



EF21 #14

EF21 (Richtarik et al., 2021) is the theoretically fastest method that is
provably correct when using contractive compressors

min {f(fc) = :LZfz-(af)}

Assumptions:
1. fi(x) are L;-smooth, but can be non-convex

2. f(x) is L-smooth, but can be non-convex

3. 3f* > oo, such that f(z) > f*,Vo € R?

Goal:
Find 7: E[||V£(Z)]?] < &



EF21 #14

EF21 (Richtarik et al., 2021) is the theoretically fastest method that is
provably correct when using contractive compressors
Number of machines
min {
) .
Vz,y €R \ Assumptions:
1. fi(x) are L;-smooth, but can be non-convex

( e
1
V(@) - Vi@ < Lifle—y 2y f@) =2 ; fi(z)

2. f(x) is L-smooth, but can be non-convex

3. 3f* > oo, such that f(z) > f*,Vo € R?

Goal:
Find 7: E[||V£(Z)]?] < &



[EF21: Error Feedback 2021\

k1 ok n ok
W = g = % Zi:l g; X
gitt = gF + CH(V f;(2PT1) — gF)
\_ 1 J

At Client

J

At Master




/EF21: Error Feedback 2021\ (

Total Number of Clients ]

k41 E_ oyt % L
= _ﬁZizlgi\
k+1

;" = gi + CF(Vfi(a™1) — g7)
\_ /\{ Iteration ]

Client ]




/EF21: Error Feedback 2021\
k+1 _ k7 k
v =& n Zi:l Yi /[ Communicated from J

Master to Client

gitt = gF + CE(V f;(2*T1) — gF)
\_ 1 Y,

Communicated from
Client to Master




/EF21: Error Feedback 2021\

k1 _ ok ANk
L =z =15 L gie

;" = gf + CF(Vfila"*) = g

\_

;)

Y, \

(Reconstructible at the server from A
1) received compressed messages
2) previous server states gF !, ... gF1




(EF21: Error Feedback 2021 d The EF21 analysis allows step size
ol =g g Zz’:l 9; 1> 5() -
/ a) |
O0<y< L+ =) Lxy/=7=|
_ J\ [
4
o 1
EF21 guarantees [~ aa € (0, 0-5)]

N T 0
E[|Vf(@@T))?] < 24 fy% L4 o [06@) = 1~ VT= . ) = 25

N
[a: = % for TopK compressor

J




EF21
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/EF21: Error Feedback 2021\
_ .k n k
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gitt = gk + CH(V fi(2F+1) — gF)
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The EF21 analysis allows step size
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EF21

4 The best step size for EF21 A

v = (L+\J%ZL§X %)
-

J




EF21

4 The best step size for EF21 A
—1
_ 1,2 [B@)
’)/(L—F\Jn;Lix 9(@))

~ i \/j
d A This is already very important A

Can we decrease it? 1 1
. o 2
Lgﬁi Li< \/n N L
AM

N\ J
\

QM Y,




2e+03]

—4— Topl

Top5

4 The best step size for EF21 A 1.8e+03) - g
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And it can be arbitrarily big for

TopK with K < d
. J y

Can we decrease 1t?




‘QQ’ICLR ~eloaded )24

Learning Representations

/ The best step size for EF21 \

_ RS B(e)

We improved the step size in 3 different ways to
—1

l < B(a)

b))




Example-Driven Reformulation

Lam (1+1+1+100) _ o5 75 LQM _ \/(1+1+1+100 100) _ . /5500.75

Toang = 3-(5/4)+52-(500/8) _ 95 75 EQM _ \/3-(5/4)%:-(500/23)2 _ /1563

QM changed, even AM is the same !



Ch3: EF21 Reloaded (Approach 1)

n clients with f;(x)

fla) =3 X fiz)

VIRTUAL CLONING OF EF21 CLIENTS




Ch3: EF21 Reloaded (Approach 1)

n clients with f;(x) Client i cloned N; times

f(x) = %Z?:l fz(:)::) N = Z?:l N;

VIRTUAL CLONING OF EF21 CLIENTS




Ch3: EF21 Reloaded (Approach 1)

n clients with f;(x) Client i cloned N; times

Fay=1iyr fi@)  NViEXim N Fgy o 1y e

VIRTUAL CLONING OF EF21 CLIENTS




Ch3: EF21 Reloaded (Approach 1)

flo) =% ¥, T8, fT“ ()
1 |

- Fisl@) = - fal@), Liy = v L

P

% N:=Y" N,  Each client i cloned N; times

VIRTUAL CLONING OF EF21 CLIENTS




Ch3: EF21 Reloaded (Approach 1)

f(az) — % Z?:l fo\i’i ﬁ;(i’f)

Lij = nII\(f Li
n L?
M(Nl,. \/sz 123 1 7,]_ \/Zizlm
2 L
min M(Nl,...,Nn):Z:":—1
N,€R,N;>0,5"" | N;/N=1 n

2amili < M([L1/Lan],- . [Ln/Lam])) < (2 20, Li)V2

N /"
x .., N*




Ch3: EF21 Reloaded (Approach 2)

Good: We reduced QM to AM (up to the factor v/2)
Bad: We need to increase number of workersn - N,n < N < 2n

EF21-W



Ch3: EF21 Reloaded (Approach 2)

Good: We reduced QM to AM (up to the factor v/2)
Bad: We need to increase number of workersn - N,n < N < 2n

Assumptions:
B1. Initial shifts for all clones are identical B2. The compressors are deterministic
= Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

EF21-W



Ch3: EF21 Reloaded (Approach 2)

Good: We reduced QM to AM (up to the factor v/2)
Bad: We need to increase number of workersn - N,n < N < 2n

Assumptions:
B1. Initial shifts for all clones are identical B2. The compressors are deterministic
= Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

v
E4+1 _ k+1 _ n Ni g k+1 _ .k n k
ahtt = g* __Z@ 191 »CCH = N 2oic1 2193 » "t =g _’Yzizlwigi
k+1 1
gt = gF + CHV L) —gf) T gt = g+ CE(VEy (M) — ) T g = g + CF (G Vi)
L;
YT Ty

EF21-W

—qF)




Ch3: EF21 Reloaded (Approach 2)

Good: We reduced QM to AM (up to the factor v/2)
Bad: We need to increase number of workersn - N,n < N < 2n

Assumptions:
B1. Initial shifts for all clones are identical B2. The compressors are deterministic
= Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W

k+1 _ .k n k
k n = 1
g, " =g + Cr (G VE) = gf) 1

Our analysis reveals that assumptions (B1) and (B2) are not required

EF21-W



Ch3: EF21 Reloaded (Approach 3) #22

The analysis of EF21-W reveals that the original EF21 analysis requires modification for the quantity G*

Gt .= ||gt — Y@ 2 gt .S g
Gl gt - VA2 ¢t=r, tar G T S 2=t Wi

L;

n =1l

It motivated us to analyze the original EF21 and discover:

Incorporating weights into the original EF21 analysis improves the rate !!

Weights in EF21 Analysis



Federated Learning Challenges Addressed in the Thesis #23

Ch3: EF21-W Ch3: EF21-W
Richtarik et al., 2024 Richtarik et al., 2024
Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL

Burlachenko and Richtarik, 2024



Main Tools for Privacy Guarantees in FL

intel)

Trusted Execution Environments (TEE) S
SGX

SV
<7 S
&

Protects the execution environment from illegal intervention \

Differential Privacy (DP) J

Protects output of algorithm so that users’ data are not leaking after execution

Secure Multi-Party Computation (MPC) 8

Protects inputs of algorithm at the cost of communication

% . = = .5
Homomorphic Encryption (HE) dd s — &
Computation on encrypted data without revealing inputs or outputs




Homomorphic Encryption (HE)

Homomorphism of two groups 1 and G» is a mapping f : G4 — Go
flxxy) = f(x)* fly), Va,y€ Gy

1F

Homomorphic Encryption:
Computation on encrypted data without revealing inputs or outputs

Homomorphic Encryption In Action:

1. Any device with the public key can perform computations on encrypted data
2. Only the holder of the private key can decrypt the result

Cheon-Kim-Kim-Song (CKKS, 2017):

a. The CKKS scheme supports approximate arithmetics on real and complex dense
vectors and is considered as SOTA in this class

b. CKKS (and HE in general) is more complex primitive than classical block ciphers
(e.g. AES-based), relying on entirely different mathematical foundations




Distributed Compressed Gradient Descent with

#26

Homomorphic Encryption (HE)

Average of Encrypted
k ey Cl (vf1($k)) Messages =

“— \ Encryption of Average
message :

of Plain Messages

D AN Enc ((Co(V fa(zF)))

Enc(Cp(V fr (2"
|_! 2" e Enc(C(V fo &gk:izy@m(awﬁmk»)

rFtt = 2k — 4* Dec(g*)



Classical Cryptography: AES Block Cipher

128 bits 128 bits
: Encrypt :
Plaintext Block > —| Ciphertext Block
Decrypt
Key 128|192|256 bits

AES (2001) Block Cipher
* Maps deterministically and with reversible operations input (128 bits) into output (128 bits)
* Has hardware support (Intel Westmere, AMD Bulldozer, ARM Cortex-A53)
e AES is a strong cryptographic primitive, widely trusted as a secure PRP

A secure pseudorandom permutation (PRP)
produces permutations that are computationally indistinguishable from uniformly random
permutations by any known polynomial-time algorithm




A DP, HE, MPC, TEE...

But where is Classical Cryptography?

Researchers from 2020 — 2024 consistently argue that applying symmetric-key

encryption like AES or DES in FL is| unsuitable, challenging, not feasible

Secure, Privacy-Preserving, and Federated Machine Learning in Medical Imaging,

G. Kaissis et al. (2020) Nature Machine Intelligence

Private Artificial Intelligence: Machine Learning on Encrypted Data,

Kristin E. Lauter (2022) SIAM

Cybersecurity English Accelerated Encrypted Execution of General Purpose Applications,

V. Joseph et al (2023) NVIDIA Blog

FedSHE: Privacy-Preserving and Efficient Federated Learning with Adaptive Segmented CKKS Homomorphic Encryption,
Pan. et al. (2024) Cybersecurity

Revisiting Fully Homomorphic Encryption Schemes for Privacy-Preserving Computing,

N. Jain et al. (2024) Emerging Technologies and Security in Cloud Computing



Ch4: DCGD/PermK/AES (2023)

A Distributed
DISTRIB S\ Compressed
Gradient Descent

23 > Federated Learning is Better with Non-Homomarphic Encryption

Home > Conferences > CONEXT >

X in & f
Federated Learning is Better with Non-Homomorphic Encryption

Ali Albalawi, §, Peter R

Authors: J, Konstantin Burlachenko,

Permutated
Correlated
990 7202 2 ”

Compressors

Published: 0

DistributedmL '23: 0 ABSTRACT °
Proceedings of the 4.

;‘:f;,“{f,':,tff;,’,wu @ @ @  raditional Al methodologies necessitate centralized data collection, which ~

-8 j 3 3 becomes impractical when facing problems with network communication. data o

+— Previous ext — D @ @ Pprivacy. or storage capacity. Federated Learning (FL) offers a paradigm that B

@ @ @  empowers distributed Al model training without collecting raw data. There are 2

@ @ @ ifierent choices for providing privacy during FL training. One of the popular
methodologies is employing Homomorphic Encryption (HE) - a breakthrough in privacy-preserving

computation from Cryptography. However, these methods have a price in the form of extra

Advanced Encryption
Standard

computation and memory footprint. To resolve these issues, we propose an innovative framework

that synergizes permutation-based compressors with Classical Cryptography. even though
employing Classical Cryptography was assumed to be impossible in the past in the context of FL

s which

Our framework offers a way to replace HE with cheaper Classical Cryptography primitiv

provides security for the training process. It fosters asynchronous communication and provides

flexible deployment options in various communication topologies



DCGD/PermK




DCGD/PermK

PermK Compressors (Rafat Szlendak, et al. 2021)



#30

DCGD/PermK o
Green user uses coordinates 3,4 from [d| = {1,...,6} Example
V f1.2.3(z") 95 g5

" G
_____ - >4
/7‘%_1’2’37

Training Iteration Scaling is needed to preserve unbiasedness




DCGD/PermK

k

ok gF = Bi(V fi("))mmp g
f 1999

k Q00 mm

-~ gz

o Q00 ™=

e -3 In
k=1,2.3

Algebraic Properties of PermK
& [l Z?:l B@(’U%‘)] — % Z?:l Uy Yv; € R4

n

E [l 3oim Bi(vi) — 7 Ximq oill®] < 3 i lusll® = Il 225y vill®

n




DCGD/PermK/AES

o -y g7 = Bi(V fi(z
e 91333

o QO P

LES ‘DD

k:172737

gk‘ — Z?’:l miﬁ — concat(mlf, “ e 7mlr{1)



DCGD/PermK/AES
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DCGD/PermK/AES #30

O O O 0O O O e

HE/CKKS for AES-128 security level
requires key(s) with sizes 420 000 bytes

For AES-128 the key size is 128 bits (16 bytes)

=i

=Y " . m¥ = concat(m,..., mk)




DCGD/PermK/AES vs HE

For g; = Bi(V fi(2"*))
Enc(: Y1, gF) = 2Concat(Enc(gf), Enc(gh), . . ., Enc(gk))

t

— Only compatible with specific
+ Does not introduce numerical errors
+ Low memory overhead from AES

NEW

Vgt € R4
Enc(1 37 gy =13" Fnc(gk)
t

+ Works with arbitrarily
— Introduces numerical errors
— High memory overhead

CLASSICAL HE




DCGD/Permk/AES vs DCGD/PermK vs GD vs GD/CKKS #32
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5 1 =~ GD, d=100K
* 107 4 =)= GD, HE/CKKS, d=100K
0 500 1000 1500 _ 2000 _ 2500 _ 3000
Rounds

(¢) d = 100000

Linear regression
Interpolation regime
n=>50, n; =12

Compute FP64

Tuned v = 0.007 for DCGD

Theoretical v for GD



Semi-Asynchronous Behavior for DCGD/PermK #33

Gradient Descent DCGD/PermK/AES
E 4
9" =321 VSi(x) g* = [p1,p2,p3:pa]”
k+1
ahth =gk — v % ) gk m12);_1"‘58:2,3,4 - xIlgarts:2,3,4 - % ' [gk]part5:2=3=4

Start forward pass for next iteration with partial z**!

Requires synchronization among clients
Wait for straggler (client number #1)




Federated Learning Challenges Addressed in the Thesis #34

Ch3: EF21-W

Ch3: EF21-W
Richtarik et al., 2024

g
Mi Richtarik et al., 2024

Ch4: DCGD/PERMK/AES
Burlachenko et al., 2023

Ch7: Unlocking FedNL

Burlachenko and Richtarik, 2024



Distributed Gradient Descent => Distributed Newton #35




Distributed Gradient Descent => Distributed Newton #35

= V f1(z*)
f )

ko |V fa(x"
f2D . -V2f2($

N—

w

)

N—

) k1l — 2k —fW(Hk)_lgk

Backtracking line search
[BV, 2004]

R.




Distributed Gradient Descent => Distributed Newton #35

== Vfl Qj‘k
/1 E@:, vt V2f1((:z:k))
P o= G )

B k an(a:‘k)
P G

Bad: The memory requirement for forming and storing second-order information

okl — Lk W(Hk)_lgk




Distributed Gradient Descent => Distributed Newton #35

O O O

p-I XV2f(x) 2 L-1
IV2f(2) = V2 fW)ll2 < Lullz — yll2

VA <0 = 1 =1, LIV < (£ IVAER)

BV, 2004]

2
Good: Error®*! < Const - (Errork) . In practice, number of iterations is = 6.




Federated Newton Learn (2022)

(Existing)

Problem 4 FedNL: Federated Newton Learn N
(M. Safaryan et al., 2022)

r* = argmin (f(:c) = — E f@(x)) = ok - [LST HE BT LS V()
n
=1

R :
h \Hfﬂ :AHF ’ CgQN

EF21 Mechanism FedNL Technicality
~

Generalizing Biased and Unbiased Compressors to Symmetric Matrices

Assumptions for FedNL Family

f(x) is u strongly convex and f;(x) has Lipschitz continuous Hessian



Federated Newton Learn (2022)

(Existing)

Problem 4 FedNL: Federated Newton Learn N
(M. Safaryan et al., 2022)

1 -
r* = argmin (f(a:) =~ Z f@(a:)) P =gk — (LS HE T LS Vi)
rERA 1=1 HE — gk 4 Ct(Vin(xk-H) _ H.fc)

\— - Z /

FedNL Local Superlinear Convergence Guarantees

D depend on Smoothness of Hessian C €{2,8}  TFor |C(M)—-M|% < (1-a)|M||p the A=

2
- < f/Hk < ,ffc lo* — a*|? < Zlla® — 2*||?

: |+ — 2|2 /1 k 0
ok — ZHHk V2 £ (2|2 E[ 1% — 2|2 < {1—min §,A F.c
i=1 IV2f(x) = V2 f(W)llr < Lelle - yll2

k
dF .= H* 4 6 BL%[[2" — 2*|? E[0F] < (1 — min GA)) o0




Federated Newton Learn (2022)

(Existing)

Can we practically use the FedNL implementation presented at ICML 20227



Federated Newton Learn (2022)

(Existing)

Can we practically use the FedNL implementation presented at ICML 20227

Not Yet!

Requires 4.8 hours to launch a single experiment on a server-grade workstation

The prototype supports only a multi-node simulation

Prototype integration into resource-constrained applications is challenging




Problem is Deeper

Fact #1 from Data-intensive Computing and OS

Overheads introduced from a large number of components lead to degradation
[1] Scalability! but at what COST?” by McSherry et.al., 2015

Fact #2 from Computer Architecture/Programming Languages
Scripting languages offer the advantage of democratizing implementations.
But their eco-system clashes too much with the principles of the real hardware.

[2] There’s plenty of room at the top: What will drive computer performance after
Moore’s law? by Leiserson et al., Science 2020

This is awesome! | want to use whatever you so-called Control.
What should | use? ...nothing.

[3] InControl podcast: Interview with Stephen Boyd, 2023, 01:17:10

We are in a crisis. Researchers are disconnected from underlying
technologies through abstractions. The problem is abstractions are leaky.
[4] P. Liang, Stanford CS336 Language Modeling from Scratch, Spring 2025



Ch7: Unlocking FedNL (2024)

From Theory to Practice

Simultaneously advancing a rigorous theoretical framework and an efficient
implementation presents a significant challenge, as both are equally demanding

Contributions for Making FedNL Practical

We proposed two new practical compressors
Reduced wall clock time of a baseline by x1000
Outperforms several best practice solutions
Complete independence on 3rd party frameworks
[Linux, Win, macOS] x [AArch64, x86-64, CUDA]
5. Can be utilized as native OS executable binaries and libraries

B wnN e




Pessimism of TopK Contraction Factor

Cd(oc) ={C|C: R 5 RY E [||C’(:1:) — .’EH2] < (1-a)||z||*}, Ve (0,1]

[|TopKIK = 10](x) — x| |2

— a=1_||TopK[K=102](x)—xI|2 X~Sd_1' 100 e oa=1- e ,X~Sd_1
[l ' 8
6 a (worst case): 0.2000 W@ | | a (worst case): 0.0050
-~ o (average): 0.6382 . 80 ¢+ a (average): 0.0481
> =
P 2 60
[} Q
) o
40
2
20
0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0— 0.01 0.02 0.03 0.04 0.05 0.06 0.07
a a
(a) d=50, TopK with k = 10. (b) d=2000, TopK with k = 10.

Figure 7.1: Discrepancy between worst-case o and a(x) when z ~ .. Sa-t
Number of trials 20 000.



Adaptive TopLEK Compressor

E [HTopLEK(a:) — CEHZ] = (1- a)||:r:||2, D<a<l

* Theidea is to perform compression using TopK, with smaller parameter
k < K compressing as much as theoretically allowed — but no more

 For TopLEK, the inequality that describes contraction becomes a tight equality



Cache-aware RanSeqK Compressor

BYw)={B|B:R* - R% E[|B(z)-z|*] <w|z|?, E[B(z)] =z}, Yw>0

RandK selects a subset of coordinates of cardinality k u.a.r. from a total of d
coordinates, zeroing out the rest and scaling the output to preserve unbiasedness



Cache-aware RanSeqK Compressor

BYw)={B|B:R* - R% E[|B(z)-z|*] <w|z|?, E[B(z)] =z}, Yw>0

RanSegK selects a pivot s u.a.r. from {1,2, ..., d}, then selects deterministically a
block of size k from (1,2, ..., d) seen as a torus

Table 7.8: Memory latency comparison in computing devices.
. Approximate
Device and Memory Level Scale
Latency (ns)
CPU cycle 0.3 xl
CPU register (SRAM) 0.3 x1
. L1 cache (SRAM) 0.9 %3
It has the same variance as RandK, Floating Pornt
. .- . . 1.2 x4
b t t 5 | . t. addition, subtraction, and multiplication
ut it is more appealing in practice 12 cnche AN . —
L3 cache (SRAM) 10 %33
Main memory or )
Physical Memory (DRAM) 100 X330
The OS System Call:
Transitioning from user to kernel space 300 > 1000
Solid-State Disk (SSD) 10000 x33 000
Rotational Hard Disk Drive (HDD) 10000 000 %33 000000




Ch7: Unlocking FedNL

#42

Single Node Experiments: L2 Regularized Logistic Regression
Baseline Improvements

Single Node

Table 7.2: Single-node setting, n = 142, FedNL-LS (B), |V f(x!a5t)|| ~

9. 107'° FP64, 24 cores at 3.3 GHz.
Table 7.1: Single-node setting, n = 142, FedNL (B), » = 1000, WS8A, | A9A, [ PHISHING,
A = 0.001, o - option 2, FP64, 24 cores at 3.3 GHz. # | Solver A e i
s Initialization Time (seconds
o | Bl G pesaibn (g Caall ’(I;tc;ﬂnglsl)ne 1 | cvxpy +;.54 )+2.33 +2.28
1 | RandK[K=8d] (We) . 108 | 1Bsd 2 | FedNL +0.939 | +0.196 +0.081
Solving Time (seconds)
2| FandRR=4d (Base) 3-1077 | 17510.00 3 | CLARABEL 1924 | 1083 2.50
3 | TopK[K=8d] (We) 2.80-107'% | 18.72 1 | ECOS 22,99 8.02 2.55
4 TopK|k = 8d] (Base) 2.80-10"18 | 19770.00 5 | ECOS-BB 22.00 8.00 2.12
5 | RandSeqK[K=8d] (We) 3.19-107'% | 16.70 6 |58 L4 | 1936 407
7 | MOSEK 16.90 9.59 3.55
6 | TopLEK[K=8d] (We) 3.45-10718 | 18.48
8 | FedNL-LS / RandK[k = 84| 4.35 0.34 0.12
7 | Natural (We) 3.10-1071% | 27.02 9 | FedNL-LS / RandSeqK[k = 8d] | 3.34s | 029 0.06
8 | Ident (We) 2461019 | 24,12 10 | FedNL-LS / TopK[k = 8d] 4.49 0.46 0.10
11 | FedNL-LS / TopLEK|k = 8d] 4.79 0.34 0.61
12 | FedNL-LS / Natural 3.13 0.17 0.08
13 | FedNL-LS / Identical 0.63 0.09 0.06




Ch7: Unlocking FedNL 443

Multi Node Experiments: L2 Regularized Logistic Regression

Table 7.3: Multi-node setting, n = 50 clients, 1 master,
IV f(z!*%)] ~ 1072, FP64, 1 CPU core/node.

WSEA A9A PHISHING
# | Solution d=301, | d =124, d =69,
n; = 994 n; = 651 n; — 221

Initialization Time (seconds)

1 | Ray +52.0

2 | Apache Spark +25.82

3 | FedNL +1.1

Solving Time (seconds)

4 Ray 116.17 28.13 11.54
5 Apache Spark 36.65 33.59 33.14
6 | FedNL / RandK|[k = 8d] 12.6 4.52 0.21
7 | FedNL / RandSeqK[k = 8d] 12.56 5.10 0.14
8 | FedNL / TopK[k = 8d] 12.20 5.79 5.23
9 | FedNL / TopLEK[k = 8d] 15.11 3.26 0.82
10 | FedNL / Natural 5.75 1.56 0.14




Ch7: Structure of x1000 Time Improvement for Single Node

FP64, 3.3Ghz, 12 cores, Intel(R) CPU. Logistic Regression d=301

Baseline: Single node Python/NumPy implementation from the original paper
Rewrite in pure C++20/CMake with support macOS, Linux, Windows

Data Processing Optimization

Eliminating Integer Division

Utilizing AVX512 CPU Extension in x86-64

Compiler and Linker Optimization Total number of improvements at a
Use Sparsity from FedNL Compressors finer granularity: 62

Reuse Computation from Oracles

Basic Linear Algebra Improvements

Linear System Solve Improvement

Custom oracles without using Cache-Oblivious matrix multiplication

Better Compressors Implementation

Thread pool of workers equal to number of physical cores, atomics for sync
Mem. Optimization. Custom client-specific memory pool instead of global

x1.077

 x20
 x1.077
| x1.225

x1.379

x1.128
x1.44
x1.50
x1.338
x1.31
x3.072
x1.14
x1.412
x1.278
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Ch3: EF21-W P ch3: EF21-W
Richtarik et al., 2024 g Richtarik et al., 2024

Ch7: Unlocking FedNL
Burlachenko and Richtarik, 2024




Federated Learning Challenges Addressed in the Thesis #45

Theoretical Work Theory-Inspired Practical Work Practical Work

Ch5: PAGE Extensions
Tyurin et al., 2023

Cheé:
Compressed L2GD

Bergou et al., 2023

Ch8: BurTorch
Burlachenko & Richtarik, 2025

Cheé:

Compressed L2GD
Bergou et al., 2023

Ch2: FL_PyTorch
Burlachenko et al., 2021




Chapters Excluded from In-Depth Presentation

Ch2: FL_Pytorch (2021) Existing software frameworks for FL prioritize
deployment, raise the entry barrier, and demand expertise in distributed systems. —
Research requires tools with functionalities distinct from industrial runtimes. TR

Ch5: PAGE Extensions (2023) PAGE is a theoretical optimal algorithm for finding a
stationary point in sampled gradient complexity in big - O notation. This work
enhances the analysis of PAGE and extends it with other sampling strategies.

an
ML RESEARCH

Ch6: Compressed L2GD (2023) New Paradigm for FL was proposed in “Federated tl
Learning of a Mixture of Global and Local Models” (2021) by F.Hanzely and — mm';
P.Richtarik. This work extends it with bidirectional communication compressors.

Ch8: BurTorch (2025) Latency-efficient backpropagation CPU implementation,
which outperforms: JAX, TF, TF Lite, LibTorch (C++), PyTorch TorchScript, PyTorch
Python, Apple MLX, Autograd, Micrograd in memory, time, consumed energy.
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All presented projects are accompanied by open-source code,
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Ch2: FL_Pytorch

Flower [49] 15 15 2 25 2 1 1 1 1 0 1 1 1.5 17
OpenFL [50] 15 13 2 2 1 1 1 1 1 1 1 1 1.5 165 Fel ebriti 502
IBM-Federated [45] 1.5 1 1 2 2 1 1 1 1 0 0 1 1.5 14 ( ) .
PySyft [46] 15 1 1 2 1 1 1 1 15 0 0 1 15 135 eLebrities 023):
Nvidia Flare [43] 1 1 15 2 2 1 1 1 1 0 0 1 1 13.5

FedML [48] 15 0 1 25 2 1 1 1 1 0 1 0 1.5 135

Fedn [60] 1 1 2 2 1 1 0 1 05 1 0 1 15 13 .

Fedlearn-algo [54] 0 0 15 g 0 1 0 1 1 1 0 1 15 o A User-Centric Assessment
XFL [81] 1 0 2 2 1 0 1 1 1 0 1 1 Z .
PLATO [80] 1 0 1 25 1 1 1 1 1 0 1 0 15 12

FATE [47] 1 0 15 0 2 1 0 1 1 1 1 1 1.5 12 of Federated Learnlng
APPFL [62] 1 0 2 1 1 1 1 1 1 0 1 0 1 11

FedLab [51) 1 0 2 1 1 1 1 1 1 0 1 1 0 1 Frameworks

FedBioMed [61] (GitLab) 0 1 1 2 1 1 0 1 05 0 0 1 1.5 10

FedJAX [55] 1 1.5 1 2 1 1 1 0.5 0 0 1 0 0 10

OpenFED [37] 1 1 2 1 1 1 1 0.5 0 0 0 1 0 95 W. RiVi

Tensorflow Federated [44] 1 1 2 1 1 1 1 0.5 0 0 1 0 0 95

PyVertical [56] [57] 0 1 2 0 1 1 0 1 1 0 0 1 1 9 - RIviera,

FL-Pytorch [71] 1.5 1 1 1 1 1 1 0.5 0 0 0 0 0 8

FLUTE [79] 0 0 1 1 1 1 0 05 0 0 1 0 1 75 I.B. Gal azzo,

PriMIA [58] 1 0 0 1 1 1 0 05 0 0 0 1 1.5 7

Sunday FL [66] 1 0 15 0 0 1 0 1 1 0 0 0 1 ss| G. Men egaz

dsMTL [65] 00 00 10 1.0 1.0 1.0 0.0 1.0 00 00 0 1.0 0.0 6

Substra [59] 1 0 0 0 0 1 1 1 1 0 1 0 0 6

DecFL [67] 0 0 0 1 1 1 0 1 05 0 0 1 0 5.5

Vantage6 [69] 15 0 1 0 0 0 1 1 1 0 0 0 0 55

HyFed [63] 0 1 0 0 0 1 0 1 0 0 0 1 0 4

MTC-ETH [68] 00 00 00 0.0 0.0 0.0 0.0 1.0 05 0 0 10 0.0 25

P ey
Ty 560 it ocaloptavention ot e
Iy ratea v ranent s gt

Ul weight decay 5.0

Onmn | crAfiLR
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Ch5: PAGE Extensions

Key Step in Discovery Path

The € is the probability sample space. Let S : a1 x -+ X ay, -+ - — m with

the following properties:

1

zz 1%

Ly al] = 450 (s llel?) - Bl T, al?

In the paper, we provide several sampling strategies that satisfy the above
conditions. Next, with respect to the weighting w;, we require to estimate the
constants Ly ,, and Ly

1y nﬁuv,ﬁ(m)

L. =01;L- =096;L, =097

- Vanilla PAGE, Batch: 1 Step: 0.03
Uniform With Replacement, Batch: 1 Step: 0.24
ance, Batch: 1 Step; 0.98

L Ey[SO)] =5

= VI = L2 ullz = y)?

= VEWI? = V@) = VIWI?) < L ulle - vl?

L: =05 L- =096;L, = 1.08

- vanilla PAGE, Batch: 1 Step: 0.03
Uniform With Replacement, Batch: 1 Step: 0.06
. Batch: 1 Step: 0.17

Importance,

10-*
1073
o . Yoy
£ <
= 1 = -
= 1070 - = {
\_‘ -
y !
10 3 ~
\ ~
10 \
10~ L . . ; ; , . 105 L. . . . . . .
6 5000 10000 15000 20000 25600 30000 0 5000 10000 15000 20000 25600 30600

# of gradient calculations # of gradient calculations

Theoretical Improvements

Our Theory for Single Gradient Oracles:

N—O(n |S(L +\/|S| ((A-B)L%
Original PAGE Analysis:

w+BL% )))

B0 (p_y \/ﬁm)

Novig = O (n+ —

Improved Original PAGE Analysis:

A
Mmproved =0 (?’l + 6_20 : (O + \/EL.F))

Important Sampling in PAGE:

Ap n
Nimportant-sampling =0 (n + 6_2 T (L + \/;Lisw>)

Lyw<L;y and L., <L,

Comparison on synthetized quadratics




Ch6: Compressed L2GD

Algorithm 15 Compressed L2GD.

Input: step size n > 0, probability p

: 1 ¢ 1
min F)\( Z f'.: -Tu z + A — Z ”ZEE = 33”2 Initialize: {a0}izy  ,. 61 =1,2"' = ;Z;':l-l'?
:Cl....,:CnERd 2’]’1 . for k =0,1,2,... do 1
‘ i=1 Draw: & = 1 with probability p mn- T Vf(T), W.p. 1-— D
if { = 0 then

f(@) = & X0y fulws; Di) @) i= A gy iy o = 2P g ST A T e

if &1 =0 then

on all devices: Compress z¥ to C;(z¥) and communicate C;(2¥) to the master
Goals on master:
[ ]
Etrongly convexcase E ZEk — .'17* S E”.ID — :E* |2 1. Receive C;(z¥) from all devices i € [n]
* Non-convex case k 2 k(2 2
(E “IVF('I )”]) < E [HVF x )” ] <e€ 2. Compute ¥ ! —Zl 1G5 (
Compressors 3. Compress §* to Car(y*)
Each client and master use its own unbiased compressor from B¢ (w) 4. Communicate Cp(7*) to all devices
on all devices: Perform aggregation step z¥! = z¥ — %/\) (aF — Ca(@"))
Aspects of L2GD else .
* Aisscalar parameter which allows tradeoff between local and global on all devices: ~- 1oy, Vh(z), w.p. p]
I P ?
model a. zF = gk-1
A — 0 (A = 400) all nodes are working in decoupled (coupled) form b. Perform aggregation step z¥+! =z — o (¥ — z)
. . . . np
e pis probability of making (relaxed) aggregation ond i
* 1 —p isaprobability to make in parallel local GD steps end if
end for
Results Table 6.2: Summary of the benchmarks. The measured quantity is bits/n to
. L . . achieve 0.7 Topl test accuracy, with n = 10 clients. For DenseNet-121, MobileNet,
o 0 ResNet-18 the baseline is FedAVG with Natural compressor with 1 local epoch.
1. The work extends paper [HR, 2021] with bidirectional unbiased compressors
2. Linear convergence rate to neighborhood (strongly convex case) and theory for non-convex case Model Training ~ L2GD  Baseline
5 Optimal values of (A L :=nlL ) ode Parameters  bits/n bits/n
’ P - pA L= Ty DenseNet-121 79 10° 8% 1011 4.1018
4. Extended empirical study MobileNet  32x 105 L7 101 15 10%
5. Highlighted that FedAVG is a particular case of L2GD when nl = np ResNet-18 %106 11% 101 1.5 10




Ch8: BurTorch

Benchmarks Across Linux, macOS, and Windows

Table 8.2: Backpropagation over 100K iterations with a tiny compute graph from Table 8.5: Comparison of BurTerch and PyTorch performance for training MLP-like
Figure 8.1. Mean and std. deviation across 5 launches, FPG64, Windows OS. See model. Batch: b = 1, Compute: FP32, Single CPU core. Initialization time
also Figure 8.3. The numerical results across frameworks match exactly. is end-to-end time for training with 1 iteration. Compute time excludes batch
- o Telative preparation. Memory is the peak private virtual memory.
# | Framework, Mode, Language Device om];;;:) rme to BvTorch
: . BurTorch # | Parameters (d) Eager, 120;?1 ECPU] BurTorch, Eager [CPU]
1 | BurTorch, Eager, C++ CPU 0.007 £ 0.0004 x 1.0 (We) Init | Compute | Mem. | Init | Compute Mem.
. . Hidden Dim.(e)
2 | TensorFlow 2.8.0, Eager, Python CPU 55.217 £0.2075 | xT888.1 (ms) (ms) (MB) | (ms) (ms) (MB)
3 | TensorFlow 2.8.0, Graph, Semi-Python CPU 14.469 + 0.0734 *2067.0 1 5,963 (e = 4) 5540 | 1.46 + 4.63 | 2651 15.63 | 0.032 £0.008 | 35.8
4 | TF Lite 2.8.0, Graph, TF Lite Interpreter | CPU 0.589 + 0.0102 x84 2 | 18,587 (¢ = 16) 5627 | 1.52+4.21 | 2653 | 16.51 | 0.074 +0.016 | 36.7
5 Autograd 1.7.0, Eager, Python Cru 18.956 £ 0.2962 *2T08.0 3 35,419 (e = 32) 5673 | 1.55 +5.00 | 2653 18.24 | 0.124 +0.010 | 38.3
6 | PyTorch 2:5.1, Eager, Python GPU | 51380+ 04666 | x7340.0 4 | 69.083 (e = 64) 5537 | 163462 | 2668 | 1891 | 0.221 £0.040 | 40.8
7 | PyTorch 2.5.1, Bager, Pytl PU 10.419 + 0.0647 1488.4
7_| PyTorch 2.5.1, Eager, Python CPU__ | 1041900647 | 1488 5 | 136411 (e =128) | 5799 | L79£519 | 2660 | 2139 | 0.417 £ 0.077 | 45.9
8 PyTorch 2.5.1, Graph, TorchSeript Cru 9.994 £ 0.1021 x1428.5 _ _ _
G 540,379 (e = 512) 5556 | 3.01 4 5.57 | 2683 37.09 | 2.093+0.429 | 7T1.4
9 | PyTorch 2.5.1, Eager, LibTorch, C++ CPU 5.300 + 0.0667 x75H7.14 ) i
- - - 7 1,079,003 (e = 1024) | 5544 | 557 £6.75 | 2719 56.57 | 4.550 £0.847 | 107.0
10 | JAX 0.4.30, Eager, Python CPU 291.764 £ 8.5373 | x41860.5
11 | JAX 0.4.30, Graph, Semi-Pytk CPU 5.580 £ 0.0661 797.1
Taph, SemiT ython -0 0 il 1. BurTorch, Eager, C++ [CPU]
12 | Micrograd, Eager, Python CPU 1.590 + 0.0152 %227.1 2. TensorFlow, Eager, Python [CPU]
13 | In Theory for this CPU (Registers Only) | CPU | £2(0.0004) x0.057 3. TensorFlow, Graph, Semi-Python [CPU]
4. TFLite, Graph, TFLite Interpr. [CPU]
Table 8.7: BurTorch and PyTorch in training GPT-3 like model, FP32, 1 CPU core, 5. Autograd, Eager, Python [CPU]
Peak private virtual memory. Trainable variables: 46K. 6. Torch, Eager, Python [GPU]
7. Torch, Eager, Python [CPU]
PyTorch, PyTorch, 8. Torch, Graph, TorchScript [CPU]
Batch | BurTorch, Eager, C++ 3 ’ '
g Graph, TorchScript Eager, Python 9. Torch, Eager, LibTorch [CPU]
Compute Mem. Compute Mem. Compute Mem. 10. JAX, Eager, Python [CPU]
(ms) (MB) (ms) (MB) (ms) (MB) 11. JAX, Graph, Semi-Python [CPU]
1 0.515 + 0.067 167 | 1111948118 | 1624 | 11.715+10.741 | 1300 12. Micrograd, Eager, Python [CPU]
; - s T T s ’ 2 ; 107 10t 107 10710t
2 027 £0. X ¢ + 37. 2. 2. + 11.
1.027 £ 0.091 16.7 11.177 £ 37.138 1623 12.166 + 11.461 1300 Total Energy Consumed (mWh)
4 2.106 + 0.130 16.7 11.762 + 37.171 1624 12,424 +£11.120 1300
8 4.222+0.238 16.7 | 12.041+36312 | 1631  13.167+11.613 | 1308 Figure 8.7: Visualization of Table 8.19. Total power drain over 200K iterations
16 8.358 £ 0.644 16.7 | 13.451+37.415 | 1633 | 14.111+11.278 | 1308 with a small dynamically constructed compute graph (Figure 8.2) consisting of
32 16.787£1.03601 | 16.7 | 16.048 +36.460 | 1632 | 16.661+11.122 | 1308 32 nodes, using FP64. Voltage: 11.7V, Battery: DELL J8FK941J, Chemistry:
64 31.696+0.737 | 168 | 21.794+37.302 | 1640 | 22.189+11.531 | 1316 Li-poly, OS: Windows 11. The numerical results across frameworks match exactly.




Single-Node
CPU <-> System DDR Memory
GPU core <-> GPU DDR Memory

GPU DDR <-> PCI-E <->
System DDR Memory

SATA 3x (HDD)

USB 3.0 (External storage)
GPU <-> GPU (NVLink)

GPU <-> GPU
(NVLink via NVSwitch inside DGX-2)

Multi-Node

Fast Ethernet
Gigabit Ethernet
InfiniBand HDR

InfiniBand Melanox

Typical Bandwith #52
51 200 MBytes/sec (DDR5)

128 000 MBytes/sec (GDDR6)
DRAM in NVIDIA GPU NVIDIA Ada Lovelace
1008 000 MBytes/sec

4 000 MBytes / sec (PCI-E v5, 1 lane)

6000 Mbytes / sec

600 MBytes / sec
50 000 Mbytes/sec

50 000 Mbytes/sec

Typical Bandwith
12.5 MBytes/sec
125 MBytes/sec

6250 Mbytes/sec

25 000 Mbytes/sec



Ch4: AES and its Friends

AES is secure for encoding a single block
For multiple blocks, it should be used with a
Mode of Operation Algorithm

¢ Overhead: 16 bytes/message

AES with EAX Authentication

v Overhead: 16 bytes/message

To ensure that message has not been altered in transit, || ] [ e ]
AES should be paired with a Ml\. |/ Ml
Message Authentication Code Algorithm 7 T | T e [ [
(Similar to CRC for non-secure applications) s «




Ch4: A Day of Life for Message with CKKS Scheme #54

Input message m_€ RN /2

For input with d scalars, amount of ciphertexts is fNL/QW

For AES-128 compatibility level N > 16 384




Ch4: A Day of Life for Message with CKKS Scheme #54

Encode message m € RN/2 into m’ € Z[x]/(xN +1)




Ch4: A Day of Life for Message with CKKS Scheme #54

O O e O

# bits to store m” is: 2-2- & . (Ni/z] - Q) m’ (shared) = pk(secret) - m’ 4+ noise

# bits to store ¢ is Q = log,(q)
) > 438 for AES-128 level

NV 2
Encrypt message m’ € Z[x]/(xN + 1) into m”’ € (Zq [x]/(xN + 1))
A

All keys in CKKS are polynomials from Z,[z]/(z" + 1)

The key size is ) - N bits




Ch4: A Day of Life for Message with CKKS Scheme #54

O O O e

Computation on encrypted messages (m}’,m,...). CKKS allows to perform: addition, multiplication, and rotation.
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Ch3: EF21 Reloaded

Original n = 4 clients




Ch3: EF21 Reloaded

Original n = 4 clients Example

-
s

(1414 1+100) = 25.75

NI

Lanv =

D L,=1

- LQMz\/§(1+1+1+100-100):15.73
o

’ L4 = 1000
"



Ch3: EF21 Reloaded (Approach 1) #55

Original n = 4 clients Cloned N = 42 clients
E (LLl | = [25%75W =1 =
EO Li1=1 AM S E; L —
IVLAM -‘ =1

’@Lw:l

L p— P
7] = [359| = 1000/39 25.64

1<]<39
*)




Algorithm/Setting

Gradient Descent / f (x) is strongly convex.
(generalizable via adding regulizers with cheap proximal operator)

Stochastic Gradient Descent

/ f (x) is strongly convex

/ g(x) such that E[g(x)|x] = Vf(x)

/ 8(x) such that E[|g(x) — Vf (x*)|? |x] < 2ADf(x,x*) + C
De(x,x™) = f(x) — f(x") =< Vf(x"),x —x* >

Gradient Descent / f(x) is convex.
Accelerate Gradient Descent / f(x) is convex.

Stochastic Subgradient Descent

/ f(x) is convex

/ g(x) is unbiased

/ easy prove: g(x) is bounded by G, start iterate x° has an upper
bound distance R to x*

Stochastic Gradient Descent

/ f (x) is convex

/ g(x) is unbiased

/ 8(x) satisfy sigma-k assumption

Gradient Descent / f(x) is non-convex, but smooth

Stochastic Gradient Descent / f(x) is non-convex, but smooth.

Optimal SGD for case when f (x) is finite sum of n functions / f (x)
is non-convex, but smooth (e.g. PAGE)
PAGE reduces to GD if p=lort =n

Terminate condition

2
< g]x® — x*|?

|k — x*

=>if Vf(x*) = 0 then |f(x*) — f(x")

2
Ef|x* — x*|] < elx® — x*|2

S£|xk—x*
2

=>if 7f(x*) = 0 then |f(x*) — f(x")| < §|xk — x*

() = F(x*) < glx® — x*|?
fOF) = fx*) < elx® — x*|?

E[f(x)—f(x)] < e

E[f(x) - f(x)] < e

[Vr@ck) <e
E|Vf(x¥)| < e

[VF(k) < e

2

2

Iterations

k>0 (Siz) with optimal a; = %

k=0 G) to neighborhood.

1

[\

ez0(2)

#54

(Optimal)

(Optimal)

2) exactly convergence to a solution. (Optimal)

(Optimal)



