
Optimization Methods and Software 

for Federated Learning 

 

 PhD Defense 
 

Konstantin Burlachenko 

Computer Science, KAUST 



Peter Richtárik                                          Eric Feron 
 
 
 

 
 
 
 

 

   David Keyes                                         Suhaib Fahmy 

Stephen Boyd                                            Nic Lane 

Dissertation Defense Committee Members 

Images: Google Search 

#1 



MS in Computer Science 
      Bauman Moscow State Technical University (2003 — 2009) 
Industry Experience 
      Startup (2012)                  Acronis (2010 — 2012)    Yandex (2013 — 2014)  

      NVIDIA (2014 — 2019)   HUAWEI (2019 — 2020) 

Stanford Graduate Certificates 
      Data, Models and Optimization Graduate Certificate (2015 — 2018) 

      Artificial Intelligence Graduate Certificate (2016 — 2019) 

PhD Academic Journey 
      Joined Prof. P. Richtárik’s Optimization and ML Lab at KAUST (August 2020) 
      Defended CS PhD Proposal (2022) 

      Member of Center of Excellence SDAIA-KAUST AI (2022 — 2023) 

     Internships 
       Research Scientist Internship Offer, Facebook Inc., Menlo Park, USA (2021) 
       Internship in Private Federated Learning ML Team, Apple, Cambridge, UK (2024) 

     Conference Presentations 
       Presentations: ICLR’24, SIAM’23, ICML’21, NSF-TRIPODS’21, DistributedML’21&’23 

     Awards 
      Dean’s Award (2020)                   Grant from SDAIA (2022)         Dean’s Award (2023) 
      AMD MI50 from AMD (2023)    Shaheen III Proposal (2024)     RDIA grant (2025) 

#1 Background #2 

Images: Google Search 



[1] 
 

Personalized Federated Learning with Communication Compression 
E. Bergou,  K. Burlachenko,  A. Dutta, P. Richtárik 

[2] 
  

MARINA: Faster Non-Convex Distributed Learning with Compression 
E. Gorbunov, K.  Burlachenko,  Z. Li, P. Richtárik 

[3] 
 

Fl_PyTorch: Optimization Research Simulator for Federated Learning 
K. Burlachenko, S. Horváth, P. Richtárik 

[4] 
 

Faster Rates for Compressed Federated Learning with Client-Variance Reduction 
H. Zhao, K. Burlachenko, Z. Li, P. Richtárik 

[5] 
 

Don’t Compress Gradients in Random Reshuffling: Compress Gradient Differences 
A. Sadiev, G. Malinovsky, E.  Gorbunov, I. Sokolov, A.  Khaled, K. Burlachenko, P. Richtárik 

[6] 
 

Sharper Rates and Flexible Framework for Nonconvex SGD with Client and Data Sampling 
A. Tyurin, L. Sun, K. Burlachenko, P. Richtárik 

[7] 
 

Federated Learning with Regularized Client Participation 
G. Malinovsky, S. Horváth, K. Burlachenko, P. Richtárik 

[8] 
 

Error Feedback Shines when Features are Rare 
P. Richtárik, E. Gasanov, K. Burlachenko 

[9] 
 

Federated Learning is Better with Non-Homomorphic Encryption 
K. Burlachenko, A. Alrowithi, F. Ali Albalawi, P. Richtárik 

 [10] 
  

Error Feedback Reloaded: From Quadratic to Arithmetic Mean of Smoothness Constants 
P. Richtárik, E. Gasanov, K. Burlachenko 

 [11] 
 

Unlocking FedNL: Self-Contained Compute-Optimized Implementation 
K. Burlachenko, P. Richtárik 

 [12] 
  

PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression 
V. Malinovskii, D. Mazur, I. Ilin, D. Kuznedelev, K. Burlachenko, K. Yi, D. Alistarh, P. Richtárik 

[13] 
  

BurTorch: Revisiting Training from First Principles by Coupling Autodiff, Math Optimization, and Systems 
K. Burlachenko, P. Richtárik 

Papers Co-Authored During PhD (Creation Timeline) 

Workshop  
FL-ICML-2023 

Workshop  
FL-ICML-2023 

Symposium on 
SIAM OP23 

Symposium on  
ACM PODC 

2022 

ML Summer 
School 

Okinawa 2024 

KAUST AI 
Symposium 

2024 

Ch6 

Ch2 

Ch5 

Ch4 

Ch3 

Ch7 

Ch8 

Preparing for  

Resubmission  

#3 



Machine Learning #4 

Traditional machine learning assumes that  
the training dataset is collected and stored centrally 



Machine Learning 

Traditional machine learning assumes that  
the training dataset is collected and stored centrally 

However, centralized storage is not where data is generated in the first place 
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Orbis  
(Unix-like) 

Xbox System Software  
(Windows-like) 

Android iOS 
macOS, Windows, 

Linux, Unix 
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Abstract Edge Device 

Shifting Training to Edge Devices 

Images: Google Search 

watchOS 
(iOS based) 

Tesla: Tesla OS 
BMW, Volvo: QNX 

Fast Ethernet        12 MBytes/sec 

Gigabit Ethernet      125 MBytes/sec 

InfiniBand HDR    6250 Mbytes/sec 

InfiniBand Melanox 25000 Mbytes/sec 
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. . . 

#4 #4 Shifting Training to Edge Devices #6 



Shifting Training to Edge Devices 

The success of applying supervised ML (for fixed <X,Z,Y>) depends on: 
     1. Sample Size, Signal-to-Noise ratio. 
     2. Your assumptions about ℱ. 
     3. If use y = 𝐹  (x) as a predictor success depend on Z in (X, Y). 

. . . 
Optimization 
objective 
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Federated Learning (FL) 
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While FL mitigates sample size limitations and enables novel decentralized 

applications, it also brings new challenges 
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FL Origins 

Federated Learning: Strategies for Improving Communication Efficiency (2016) J. Konečný, B. McMahan, F. X. Yu, P. Richtárik, A.T. Suresh, D. Bacon 
Federated Optimization: Distributed Machine Learning for On-Device Intelligence (2016) J.Konečný, B. McMahan, D. Ramage, P. Richtárik 
Communication-Efficient Learning of Deep Networks from Decentralized Data (2017) B.McMahan, et al. 
Advances and Open Problems in Federated Learning (2021) P. Kairouz, et al.  

The first publication with “Federated Learning” in its title 
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2. Device 
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5. Software 4. Privacy 3. Communication  

Bottleneck 
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Ch5: PAGE Extensions 
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Ch8: BurTorch 
Burlachenko & Richtárik, 2025 

Ch7: Unlocking FedNL 
 Burlachenko & Richtárik, 2024 

Ch8: BurTorch 
Burlachenko & Richtárik, 2025 

Theoretical Work Practical Work 
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Ch1: Introduction 

Ch9: Concluding Remarks: Summary and Future Research 

Ch6:  
Compressed L2GD  

Bergou et al., 2023 

Ch6:  
Compressed L2GD  

Bergou et al., 2023 

Theory-Inspired Practical Work 
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Distributed Gradient Descent #10 
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Distributed Compressed Gradient Descent #11 

. . . 
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Compressors 

Cost Model 
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Compressors 

Class of Unbiased Compressors 

Cost Model 
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Compressors 

Class of Unbiased Compressors 

Class of Contractive Compressors 

Cost Model 
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Compressors 

Class of Unbiased Compressors 

Sparsification Examples  (𝒅 = 𝟑,𝑲 = 𝟐) 

                 

Cost Model 
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Class of Contractive Compressors 



Distributed Compressed Gradient Descent 

With Contractive Compressors 
#13 

Distributed Compressed Gradient Descent with TopK 
leads to exponential divergence even in strongly convex settings ( 𝑛 = 𝑑 = 3 )  

On Biased Compression for Distributed Learning (2023) Beznosikov et al. (Section 5.2) 

. . . 



EF21 #14 

EF21 (Richtárik et al., 2021) is the theoretically fastest method that is 
provably correct when using contractive compressors 

Assumptions: 

Goal: 
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EF21 (Richtárik et al., 2021) is the theoretically fastest method that is 
provably correct when using contractive compressors 
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EF21 #15 

At Master 

At Client 



 

 
 

 
 
 

 

 

EF21 #15 

Iteration 

Client 

Total Number of Clients 



 

 
 

 
 
 

 

 

EF21 

Communicated from  
Client to Master 
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Communicated from  
Master to Client 
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EF21 

EF21 guarantees 
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EF21 #16 
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Ch3: EF21 Reloaded (2024) 
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Example-Driven Reformulation 

QM changed, even AM is the same ! 
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Ch3: EF21 Reloaded (Approach 1) #19 
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Ch3: EF21 Reloaded (Approach 2) #21 

Good: We reduced  QM to AM (up to the factor 2) 
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛 

EF21-W 



Ch3: EF21 Reloaded (Approach 2) #21 

Assumptions: 
B1. Initial shifts​ for all clones are identical                B2. The compressors are deterministic 
⇒ Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W 

Good: We reduced  QM to AM (up to the factor 2) 
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛 

EF21-W 
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Ch3: EF21 Reloaded (Approach 2) #21 

Assumptions: 
B1. Initial shifts for all clones are identical                B2. The compressors are deterministic 
⇒ Under these assumptions, the cloning mechanism can be reformulated as a new EF21-W 

Our analysis reveals that assumptions (B1) and (B2) are not required 

Good: We reduced  QM to AM (up to the factor 2) 
Bad: We need to increase number of workers 𝑛 → 𝑁, 𝑛 ≤ 𝑁 ≤ 2𝑛 

EF21-W 



Ch3: EF21 Reloaded (Approach 3) 

The analysis of EF21-W reveals that the original EF21 analysis requires modification for the quantity 𝐺𝑡 

It motivated us to analyze the original EF21 and discover: 
 

Incorporating weights into the original EF21 analysis improves the rate !! 

#22 

Weights in EF21 Analysis 
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Main Tools for Privacy Guarantees in FL 

Trusted Execution Environments (TEE) 

Protects the execution environment from illegal intervention 

 

Differential Privacy (DP) 

Protects output of algorithm so that users’ data are not leaking after execution 

 

Secure Multi-Party Computation (MPC) 

Protects inputs of algorithm at the cost of communication 

 

Homomorphic Encryption (HE) 

Computation on encrypted data without revealing inputs or outputs 

#24 



Homomorphic Encryption:  
Computation on encrypted data without revealing inputs or outputs 

Homomorphic Encryption (HE) 

Homomorphic Encryption In Action: 
1. Any device with the public key can perform computations on encrypted data 
2. Only the holder of the private key can decrypt the result 

#25 

 

 

Cheon-Kim-Kim-Song (CKKS, 2017): 
a. The CKKS scheme supports approximate arithmetics on real and complex dense 
vectors and is considered as SOTA in this class 
b. CKKS (and HE in general) is more complex primitive than classical block ciphers 
(e.g. AES-based), relying on entirely different mathematical foundations 



Distributed Compressed Gradient Descent with  

Homomorphic Encryption (HE) 
#26 

Average of Encrypted 
Messages =  

Encryption of Average  
of Plain Messages 

. . . 



Classical Cryptography: AES Block Cipher 

AES (2001) Block Cipher 
• Maps deterministically and with reversible operations input (128 bits) into output (128 bits) 
• Has hardware support (Intel Westmere, AMD Bulldozer, ARM Cortex-A53) 
• AES is a strong cryptographic primitive, widely trusted as a secure PRP 

A secure pseudorandom permutation (PRP)  
produces permutations that are computationally indistinguishable from uniformly random 
permutations by any known polynomial-time algorithm 

Encrypt 

Decrypt 
Ciphertext Block 

128 bits 

Plaintext Block 

128 bits 

Key 128|192|256  bits 

#27 



DP, HE, MPC, TEE… 

But where is Classical Cryptography? 
#28 

Researchers from 2020 – 2024 consistently argue that applying symmetric-key  
 
encryption like AES or DES in FL is  unsuitable, challenging, not feasible 

Secure, Privacy-Preserving, and Federated Machine Learning in Medical Imaging,  
G. Kaissis et al. (2020) Nature Machine Intelligence 
Private Artificial Intelligence: Machine Learning on Encrypted Data,  
Kristin E. Lauter (2022) SIAM 
Cybersecurity English Accelerated Encrypted Execution of General Purpose Applications,  
V. Joseph et al (2023) NVIDIA Blog 
FedSHE: Privacy-Preserving and Efficient Federated Learning with Adaptive Segmented CKKS Homomorphic Encryption, 
Pan Y. et al. (2024)  Cybersecurity 
Revisiting Fully Homomorphic Encryption Schemes for Privacy-Preserving Computing,  
N. Jain et al. (2024)  Emerging Technologies and Security in Cloud Computing 



Ch4: DCGD/PermK/AES (2023) #29 

Distributed 
Compressed 

Gradient Descent 

Advanced Encryption 
Standard 

Permutated 
Correlated 

Compressors 
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DCGD/PermK #30 

PermK Compressors (Rafał Szlendak, et al. 2021) 



DCGD/PermK 
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Scaling is needed to preserve unbiasedness 
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Training Iteration 
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Algebraic Properties of PermK 
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DCGD/PermK/AES 

For AES-128 the key size is 128 bits (16 bytes) 
HE/CKKS for AES-128 security level 
requires key(s) with sizes 420 000 bytes 

#30 



DCGD/PermK/AES vs HE #31 

CLASSICAL HE 

NEW 

+ Works with arbitrarily  
− Introduces numerical errors 
− High memory overhead 

− Only compatible with specific  
+ Does not introduce numerical errors  
+ Low memory overhead from AES 



DCGD/Permk/AES vs DCGD/PermK vs GD vs GD/CKKS #32 



Semi-Asynchronous Behavior for DCGD/PermK #33 
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Distributed Gradient Descent => Distributed Newton #35 



Backtracking line search  
[BV, 2004] 

Distributed Gradient Descent => Distributed Newton #35 



Distributed Gradient Descent => Distributed Newton 

 

Bad: The memory requirement for forming and storing second-order information 
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Distributed Gradient Descent => Distributed Newton 

 

Good: Errork+1 ≤ Const ⋅ Errork
2
. In practice, number of iterations is ≈ 6. 
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Assumptions for FedNL Family 
 

𝑓(𝑥) is 𝜇 strongly convex and 𝑓𝑖(𝑥) has Lipschitz continuous Hessian 

#23 
Federated Newton Learn (2022) 

(Existing) 
#36 

Problem 
 

FedNL: Federated Newton Learn 
(M. Safaryan et al., 2022) 

 
 
 
 

 

 

EF21 Mechanism  

Generalizing Biased and Unbiased Compressors to Symmetric Matrices 

FedNL Technicality 



 
 

 
 

Problem 
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Federated Newton Learn (2022) 

(Existing) 

  

FedNL Local Superlinear Convergence Guarantees 

𝐷 depend on Smoothness of Hessian 
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FedNL: Federated Newton Learn 
(M. Safaryan et al., 2022) 

 
 
 
 

 

 



Can we practically use the FedNL implementation presented at ICML 2022? 

#23 
Federated Newton Learn (2022) 

(Existing) 
#36 



#23 
Federated Newton Learn (2022) 

(Existing) 

Can we practically use the FedNL implementation presented at ICML 2022? 

Requires 4.8 hours to launch a single experiment on a server-grade workstation 

The prototype supports only a multi-node simulation 

Prototype integration into resource-constrained applications is challenging 

Not Yet! 

#36 



Problem is Deeper 

Fact #1 from Data-intensive Computing and OS 

Overheads introduced from a large number of components lead to degradation 
[1] Scalability! but at what COST?” by McSherry et.al., 2015 

#37 

Fact #2 from Computer Architecture/Programming Languages 

Scripting languages offer the advantage of democratizing implementations.  
But their eco-system clashes too much with the principles of the real hardware. 
[2] There’s plenty of room at the top: What will drive computer performance after  
      Moore’s law? by Leiserson et al.,  Science 2020 

Fact #3 from S. Boyd: This is awesome! I want to use whatever you so-called Control. 
What should I use? …nothing. 
[3] InControl podcast: Interview with Stephen Boyd, 2023, 01:17:10 

Fact #4 from P. Liang: We are in a crisis. Researchers are disconnected from underlying 
technologies through abstractions. The problem is abstractions are leaky. 
[4] P. Liang, Stanford CS336 Language Modeling from Scratch, Spring 2025 



Ch7: Unlocking FedNL (2024) 
From Theory to Practice 

Contributions for Making FedNL Practical 
 

1. We proposed two new practical compressors 
2. Reduced wall clock time of a baseline by ×1000 
3. Outperforms several best practice solutions 
4. Complete independence on 3rd party frameworks 
             [Linux, Win, macOS] x [AArch64, x86-64, CUDA] 
5. Can be utilized as native OS executable binaries and libraries 

#38 

Simultaneously advancing a rigorous theoretical framework and an efficient 
implementation presents a significant challenge, as both are equally demanding 



Pessimism of TopK Contraction Factor #39 



Adaptive TopLEK Compressor 

• The idea is to perform compression using 𝐓𝐨𝐩𝐊, with smaller parameter               
                    compressing as much as theoretically allowed — but no more 
 
• For 𝐓𝐨𝐩𝐋𝐄𝐊, the inequality that describes contraction becomes a tight equality 

#40 



Cache-aware RanSeqK Compressor 

RandK selects a subset of coordinates of cardinality 𝑘 u.a.r. from a total of 𝑑 
coordinates, zeroing out the rest and scaling the output to preserve unbiasedness  

#41 



Cache-aware RanSeqK Compressor 

It has the same variance as RandK,  
but it is more appealing in practice 

RanSeqK selects a pivot 𝑠 u.a.r. from 1,2, … , 𝑑 , then selects deterministically a 
block of size 𝒌 from (1,2, … , 𝑑) seen as a torus 

#41 



Ch7: Unlocking FedNL 
Single Node Experiments: L2 Regularized Logistic Regression 

Single Node Baseline Improvements 

#42 



Ch7: Unlocking FedNL 
Multi Node Experiments: L2 Regularized Logistic Regression 

#43 



Ch7: Structure of x1000 Time Improvement for Single Node  
FP64, 3.3Ghz, 12 cores, Intel(R) CPU. Logistic Regression d=301 

Baseline: Single node Python/NumPy implementation from the original paper 

Data Processing Optimization 

Use Sparsity from FedNL Compressors 

Utilizing AVX512 CPU Extension in x86-64 

Eliminating Integer Division 

Compiler and Linker Optimization 

Linear System Solve Improvement 

Reuse Computation from Oracles   
Basic Linear Algebra Improvements 
               

Custom oracles without using Cache-Oblivious matrix multiplication 

Rewrite in pure C++20/CMake with support macOS, Linux, Windows 

Better Compressors Implementation: 

Thread pool of workers equal to number of physical cores, atomics for sync 

Mem. Optimization. Custom client-specific memory pool instead of global 

x1 

x1.077 

x1.44 

x1.379 

x1.225 

x1.128 

x1.31 

x1.50   
x1.338 
               

x3.072 

x20 

x1.14 

x1.412 

x1.278 

#44 

Total number of improvements at a 
finer granularity: 62 
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Ch2: FL_Pytorch (2021) Existing software frameworks for FL prioritize 
deployment, raise the entry barrier, and demand expertise in distributed systems. 
Research requires tools with functionalities distinct from industrial runtimes. 

Chapters Excluded from In-Depth Presentation #46 

Ch6: Compressed L2GD (2023) New Paradigm for FL was proposed in “Federated 
Learning of a Mixture of Global and Local Models” (2021) by F.Hanzely and 
P.Richtárik. This work extends it with bidirectional communication compressors. 

Ch5: PAGE Extensions (2023) PAGE is a theoretical optimal algorithm for finding a 
stationary point in sampled gradient complexity in big - 𝒪 notation. This work 
enhances the analysis of PAGE and extends it with other sampling strategies. 

Ch8: BurTorch (2025) Latency-efficient backpropagation CPU implementation, 
which outperforms: JAX, TF, TF Lite, LibTorch (C++), PyTorch TorchScript, PyTorch 
Python, Apple MLX, Autograd, Micrograd in memory, time, consumed energy. 



All presented projects are accompanied by open-source code,  
promoting a culture of openness and collaboration 

Thank You for Your Time and Attention! 
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Backup Slides 



Ch2: FL_Pytorch 

o 

FeLebrities (2023): 

 

A User-Centric Assessment 

of Federated Learning 

Frameworks 

 

W. Riviera,  

I.B. Galazzo,  

G. Menegaz 
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Ch5: PAGE Extensions 

Key Step in Discovery Path Theoretical Improvements 

𝐿±,𝑤 ≤ 𝐿+   and     𝐿+,𝑤 ≤ 𝐿+ 

Comparison on synthetized quadratics 
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Goals 
• Strongly convex case 
• Non-convex case 
 
Compressors 
Each client and master use its own unbiased compressor from ℬ𝑑 𝑤  
 
Aspects of L2GD 
• 𝜆 is scalar parameter which allows tradeoff  between local and global 

model 
      𝜆 → 0 (𝜆 → +∞) all nodes are working in decoupled (coupled) form 
• 𝒑 is probability of making (relaxed) aggregation 
• 𝟏 − 𝒑  is a probability to make in parallel local GD steps 

Results 
1. The work extends paper [HR, 2021] with bidirectional unbiased compressors 
2. Linear convergence rate to neighborhood (strongly convex case) and theory for non-convex case  
3. Optimal values of 𝑝(𝜆, 𝐿 ≔ 𝑛𝐿𝑓)  

4. Extended empirical study  
5. Highlighted that FedAVG is a particular case of L2GD when 𝜂𝜆 ≈ 𝑛𝑝 
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Ch8: BurTorch 
Benchmarks Across Linux, macOS, and Windows 
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Single-Node Typical Bandwith 
CPU <-> System DDR Memory 51 200 MBytes/sec   (DDR5) 

GPU core <-> GPU DDR Memory 128 000 MBytes/sec (GDDR6)  

DRAM in NVIDIA GPU NVIDIA Ada Lovelace  

1008 000 MBytes/sec  

GPU DDR <-> PCI-E <-> 

System  DDR Memory 

  4 000 MBytes / sec   (PCI-E v5, 1 lane) 

SATA 3x (HDD)    6000 Mbytes / sec 

USB 3.0 (External storage)      600 MBytes / sec 

GPU <-> GPU (NVLink) 50 000 Mbytes/sec 

GPU <-> GPU 

(NVLink via NVSwitch inside DGX-2) 

  

50 000 Mbytes/sec 

Multi-Node Typical Bandwith 
Fast Ethernet      12.5 MBytes/sec 

Gigabit Ethernet       125 MBytes/sec 

InfiniBand HDR 

  

    6250 Mbytes/sec 

  

InfiniBand Melanox 25 000 Mbytes/sec 
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Ch4: AES and its Friends 

Incorrect Electronic Code Book (ECB) 

Images: Google Search 

AES is secure for encoding a single block 
For multiple blocks, it should be used with a  

Mode of Operation Algorithm 

To ensure that message has not been altered in transit,  
AES should be paired with a 

Message Authentication Code Algorithm 
(Similar to CRC for non-secure applications) 

#53 

AES with EAX Authentication 

Overhead: 16 bytes/message 

Overhead: 16 bytes/message 
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Ch4: A Day of Life for Message with CKKS Scheme  
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Ch3: EF21 Reloaded #55 



Ch3: EF21 Reloaded #55 



Ch3: EF21 Reloaded (Approach 1) 

… 

…
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Algorithm/Setting Terminate condition Iterations 

Gradient Descent / 𝑓(𝑥) is strongly convex.  
(generalizable  via adding  regulizers with cheap proximal operator)  

   𝑥𝑘 − 𝑥∗ 2
≤ 𝜀 𝑥0 − 𝑥∗ 2 

=> if 𝛻𝑓 𝑥∗ = 0 𝑡ℎ𝑒𝑛 𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤
𝐿

2
𝑥𝑘 − 𝑥∗ 2

 
𝑘 ≥

𝐿

𝜇
log

1

𝜀
 

Stochastic Gradient Descent  
/ 𝑓(𝑥) is strongly convex 
/ g(𝑥) such that E g 𝑥 𝑥 = 𝛻𝑓(𝑥) 
/ g(𝑥) such that E g 𝑥 − 𝛻𝑓 𝑥∗ 2 𝑥 ≤ 2𝐴𝐷𝑓 𝑥, 𝑥∗ + 𝐶 

 𝐷𝑓 𝑥, 𝑥∗ = 𝑓 𝑥 − 𝑓 𝑥∗ −< 𝛻𝑓 𝑥∗ , 𝑥 − 𝑥∗ > 

𝐸[ 𝑥𝑘 − 𝑥∗ 2
] ≤ 𝜀 𝑥0 − 𝑥∗ 2  

 

=> if 𝛻𝑓 𝑥∗ = 0 𝑡ℎ𝑒𝑛 𝑓 𝑥𝑘 − 𝑓 𝑥∗ ≤
𝐿

2
𝑥𝑘 − 𝑥∗ 2

  

𝑘 ≥ 𝑂
1

𝜀
⋅ log

1

𝜀
 

Gradient Descent / 𝑓(𝑥) is convex.  𝑓(𝑥𝑘) − 𝑓 𝑥∗ ≤ 𝜀 𝑥0 − 𝑥∗ 2   𝑘 ≥
1

2𝛼𝜀
 , 𝛼 ∈ 0,

1

𝐿
 

Accelerate Gradient Descent / 𝑓(𝑥) is convex.  
 

𝑓(𝑥𝑘) − 𝑓 𝑥∗ ≤ 𝜀 𝑥0 − 𝑥∗ 2  
𝑘 ≥ 1 +

2

𝛼𝜀
 , 𝛼 =

1

𝐿
                                              (Optimal) 

Stochastic Subgradient Descent 
/ 𝑓(𝑥) is convex 
/ g(𝑥) is unbiased  
/ easy prove: g(x) is bounded by G, start iterate 𝑥0 has an upper 
bound distance R to 𝑥∗ 

𝐸[𝑓(𝑥𝑘) − 𝑓 𝑥∗ ] ≤ 𝜀  𝑘 ≥ 𝑂
1

𝜀2  with optimal 𝑎𝑘 =
𝑅/𝐺

𝑘
                     (Optimal) 

 

Stochastic  Gradient Descent 
/ 𝑓(𝑥) is convex 
/ g(𝑥) is unbiased  
/ g(x) satisfy sigma-k assumption 

𝐸[𝑓(𝑥𝑘) − 𝑓 𝑥∗ ] ≤ 𝜀  
 

𝑘 ≥ 𝑂
1

𝜀
  to neighborhood. 

 

𝑘 ≥ 𝑂
1

𝜀2   exactly convergence to a solution. (Optimal) 

Gradient Descent / 𝑓(𝑥) is non-convex, but smooth 
 

𝛻𝑓(𝑥𝑘 | ≤ 𝜀  𝑘 ≥ 𝑂
1

𝜀2   

Stochastic Gradient Descent / 𝑓(𝑥) is non-convex, but smooth. 𝐸 𝛻𝑓(𝑥𝑘 | ≤ 𝜀  From 𝑘 ≥ 𝑂
1

𝜀2   to 𝑘 ≥ 𝑂
1

𝜀4  depending on assumptions  

Optimal SGD for case when 𝑓(𝑥) is finite sum  of n functions / 𝑓(𝑥) 
is non-convex, but smooth (e.g. PAGE) 
PAGE reduces to GD if p=1 or 𝜏 = 𝑛 

𝛻𝑓(𝑥𝑘 | ≤ 𝜀  𝑘 ≥ 𝑂
𝑛

𝜀2                                                             (Optimal) 
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